Chapter 8: Phase Diagrams

Phase Diagrams

- Pure substances
 Phases: uniform with respect to composition and state of aggregation on both microscopic and macroscopic length scale
- Solids, liquids and gases
- Solids: many different phases (crystal structures)

What determines which phase is thermodynamically most stable?

Key quantity $\mu = G_m$ at particular T, P : lowest μ defines stable phase
 \rightarrow phases can coexist in thermodynamic equilibrium $\mu_I = \mu_{II}$

For pure substances

$$d\mu = -S_m dT + V_m dP$$

μ decreases with increasing T ($S_m > 0$)

μ increases with $V_m > 0$

$$S_{\text{solid}} < S_{\text{liquid}} < S_{\text{gas}}$$

$$V_{\text{solid}} \approx V_{\text{liquid}} < V_{\text{gas}}$$

$$\Delta S_{\text{heating}} = \int \frac{C_p}{T}, \quad \Delta S_{\text{phase trans}} = \frac{\Delta H_{\text{phase}}}{T_{\text{phase}}}$$
Situation A: 3 phases at different T
Situation B: 2 phases $(s + g)$
A or B depends on pressure (B: low pressure)

Happens at very particular $P, T : P_{\text{triple}}, T_{\text{triple}}$

Dependence of μ on P

$$d \mu = -S_m dT + V_m dP$$

$$\left(\frac{\partial \mu}{\partial P} \right)_T = V_m \quad V_m^{\text{gas}} \gg V_m^{\text{solid/liquid}}$$
$T^{P_2}_{vap} > T^{P_1}_{vap}$ if $P_2 > P_1$ (eg. Pressure cooker, cook in the mountains changes boiling temperature)

Solid – liquid

Usually $V^\text{liquid}_m > V^\text{solid}_m$ → with the exception of water, where $V^\text{Ice}_m > V^\text{water}_m$, since $\rho^\text{Ice}_m < \rho^\text{water}_m$. Ice floats on water, if reversed lakes would freeze solid.

With increasing P benzene becomes solid, however with ice as P increases, ice becomes liquid water.
Calculating $\Delta H_{\text{sublimation}}$

<table>
<thead>
<tr>
<th>Phase Transformation</th>
<th>ΔH</th>
</tr>
</thead>
<tbody>
<tr>
<td>solid \rightarrow gas</td>
<td>ΔH_{sub}</td>
</tr>
<tr>
<td>solid \rightarrow liquid</td>
<td>ΔH_{fus}</td>
</tr>
<tr>
<td>liquid \rightarrow gas</td>
<td>ΔH_{vap}</td>
</tr>
</tbody>
</table>

Changes in ΔH due to change in $P \rightarrow$ vanishes in limit

At the triple point:

$$
\Delta H_{\text{sub}} = \Delta H_{\text{fus}} + \Delta H_{\text{vap}}
$$

$$
\Delta H_{\text{sub}} > \Delta H_{\text{fus}} \text{ or } \Delta H_{\text{vap}}
$$

Clapeyron Equation

Describes $P - T$ coexistence curve:

Phases equilibrium α and β

$$
\mu_\alpha = \mu_\beta
$$

$$
d \mu_\alpha = d \mu_\beta
$$

$$
-S_{\alpha,m}dT + V_{\alpha,m}dP = -S_{\beta,m}dT + V_{\beta,m}dP
$$

$$
(S_{\beta,m} - S_{\alpha,m})dT = (V_{\beta,m} - V_{\alpha,m})dP
$$

$$
\Delta S^m_{\alpha \rightarrow \beta}dT = \Delta V^m_{\alpha \rightarrow \beta}dP
$$

Take the limit...

$$
\left(\frac{\partial P}{\partial T} \right)_{\text{coexistence curve}} = \frac{\Delta S^m_m}{\Delta V^m_m}
$$

either $\alpha \rightarrow \beta$ or $\beta \rightarrow \alpha$

$$
\Delta S_{\text{phase}}^m = \frac{\Delta H_{\text{phase}}^m}{T_{\text{phase}}}
$$

a) Solid – liquid coexistence:
\[
\left(\frac{\partial P}{\partial T} \right)_{\text{coexistence curve}} = \frac{\Delta S_m}{\Delta V_m} = \frac{\Delta H_{\text{fus}}}{T_{\text{fus}} \Delta V_m} \quad \Delta V_m = V_{\text{solid}} - V_{\text{liquid}} \quad V_m = \frac{m}{\rho}
\]

→ calculate slope of \(\left(\frac{\partial P}{\partial T} \right)_{\text{coexistence curve}} \)

\[
\frac{\Delta P}{\Delta T} = \frac{\Delta H_{\text{fus}}}{T_{\text{fus}} \Delta V_m}
\]

Melt under high pressure

\[T_{\text{melt}} (\text{high } P) \neq T_{\text{melt}} (\text{low } P) \]

b) Solid – gas or liquid – gas coexistence:

\[
\left(\frac{\partial P}{\partial T} \right)_{\text{coexistence curve}} = \frac{\Delta H_{\text{trans}}}{T_{\text{trans}} \Delta V_m} \quad \Delta V_m = V_{\text{gas}} - V_{\text{solid/liquid}} \approx V_{\text{gas}}
\]

\[
\left(\frac{\partial P}{\partial T} \right)_{\text{coexistence curve}} = \frac{\Delta H_{\text{trans}} P}{T_{\text{trans}} RT_{\text{trans}}} \quad V_{\text{gas}} = \frac{V}{n} = \frac{RT}{P}
\]

\[
\left(\frac{\partial P}{\partial T} \right)_{\text{coexistence curve}} = \Delta H \frac{P}{RT^2} \quad \text{(The usual sloppy derivation follows)}
\]

\[
\frac{dP}{P} = \frac{\Delta H}{R} \frac{dT}{T^2} \quad \text{(is exact differential...)}
\]

\[
\int_{P_i}^{P_f} \frac{dP}{P} = \int_{T_i}^{T_f} \frac{\Delta H}{R} \frac{dT}{T^2} \quad \text{assume } \Delta H \text{ constant}
\]

\[
\ln P_f - \ln P_i = \frac{\Delta H}{R} \left(\frac{1}{T_f} - \frac{1}{T_i} \right)
\]

\[
\ln \left(\frac{P_f}{P_i} \right) = \ln \left(\frac{P_f}{P_o} \right) - \frac{\Delta H}{R} \left(\frac{1}{T_f} - \frac{1}{T_i} \right) \quad \Delta H = \Delta H_{\text{vap}} \text{ or } \Delta H_{\text{sub}}
\]

\[
\frac{dP}{dT} : l \rightarrow g \text{ (flat)} > \frac{dP}{dT} : s \rightarrow g \text{ (steep)}
\]

True for every substance
Example 8.2 in book

All kinds of things to calculate with Clapeyron

Vapour Pressure of Benzene

Change in Vapour pressure with respect to \(T \) can be calculated with solid/liquid – gas coexistence curve

100% humidity in bath \(P_{H_2O} = P^* \) (Vapour P of H\(_2\)O)