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A reliable new three-dimensional potential energy surface for H >—Kr

Hua Wei and Robert J. Le Roy?
Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

Richard Wheatley” and William J. Meath®
Department of Chemistry, University of Western Ontario, London, Ontario N6A 3B7, Canada

(Received 12 October 2004; accepted 30 November 2004; published online 22 Februagry 2005

An improved three-dimensional potential energy surface for thekd system is determined from

a direct fit of new infrared spectroscopic data foi-HKr and D,—Kr to a potential energy function

form based on the exchange-Coulomb model for the intermolecular interaction energy. These fits
require repetitive, highly accurate simulations of the observed spectra, and both the strength of the
potential energy anisotropy and the accuracy of the new data make the “secular equation
perturbation theory” method used in previous analyses-pfiidre gag spectra inadequate for the
present work. To address this problem, an extended version of the “iterative secular equation”
method was developed which implements direct Hellmann—Feynman theorem calculation of the
partial derivatives of eigenvalues with respect to parameters of the Hamiltonian which are required
for the fits. ©2005 American Institute of PhysidDOI: 10.1063/1.1850462

I. INTRODUCTION ment’~ having the best possible three-dimensional surfaces
for the whole family of systems should prove useful in un-
For over a quarter century molecular hydroggare  derstanding trends in such behavior and allowing quantita-
gag (H,—Rg van der Waals molecules have been leadingive tests of models for vibrational inelasticity.
prototype systems with regard to the determination of accu-  The first reported three-dimensional potential energy sur-
rate multidimensional potential energy surfaces from experiface for H,—Kr was obtainetifrom an empirical fit to the
mental datd”’ Very high quality potentials have also been 1971 infrared(IR) data of McKellar and Welsf: While re-
determined for more strongly bound and/or more rigid sysmarkable for its time, the resolution of those measurements
tems such as Ar-HEAr-HCI,? He-CO!®™*® Ar-CO,™  was substantially lower than that of data available today.
Ne-HF}® (HF),,*® and (HCI),."” The detail and accuracy of Moreover, that surface was defined using simple empirical
these surfaces have helped stimulate the development of betennard—Joné42,6 functions for the radial behavior of the
ter theoretical methods for theb initio calculation of van  various components of the potenﬁaﬂ;ubsequent reanalyses
der Waals interactions, which in most favorable cases argf those same data used increasingly sophisticated potential
now beginning to approach spectroscopic accuracy in theunction models which incorporated both the correct theo-
potential well regiort®*°In the H,—Rg family, most atten- retically known long-range behavibrand a “collapsed-
tion to date has been focused on thetAr system for which  djatom limit” constraint which allowed a more realistic over-
the widest range of spectroscopic; *collisional?®*®and g diatom-stretching dependence to be determitigd.
bulk property datZ~>*are available. However, the heavier However, the fact that the quality of agreement with experi-
H,—Kr and H—Xe species are also interesting for a numberment obtained using these three different models for the po-
of reasons(i) The presence of larger numbers of electronsiential was essentially the same illustrates the fact that the
make them more challenging test systemsafoiinitio meth-  ayailable datd were not particularly sensitive to the radial
ods of calculating van der Waals interactiois. Their stron- shape of the potential energy surface. This conclusion was
ger isotropic and anisotropic interactions make accuratgqnt surprising, since the zero-point energy of-HKr is ap-
guantal calculation of vibration-rotation eigenvalues of theseproximately half of the well depth and the observed transi-
systems distinctly more challenging than fog+HAr, a fact  tions only involve rotational sublevels of the lowest vibra-
which stimulated our development of a better method fokjgnal stretching level of the van der Waals bond. This
performing such calculationsiii) Since the hydrogerrare  opservation underlines the importance of using a physically
gag complexes are the only atom-diatom species for whichggjistic model for the potential surface when fitting to ex-
the dependence of the potential energy on diatom bO”Berimental data of this type.
length has been quantitatively determined from experi-  The pest previous potential energy surface for-HKr is
the semiempiricalsome parameters being fixed from theory
¥Electronic mail: leroy@UWaterloo.ca “TTj3" function of Ref. 6. It was determined from a fit to a
b)Pres_ent address: Department of Chemistry, University of Nottinghamcombination of the somewhat more accurdestimated
Nottingham NG7 2RD, UK. . _ -
®Also at the Centre for Interdisciplinary Studies in Chemical Physics,uncert"iIntleég ~0.02 vs 0.03 ¢ for the data of Ref. 21
University of Western Ontario, London, Ontario N6A 3B7, Canada. IR H,—Kr data of Ref. 23 and the lower resolutior,-EKr
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IR data from Ref. 21 plus the one reported hyperfine transiwith respect to potential function parameters required by the
tion energy?? This TT, model for the potential energy func- least-squares procedure were determined by differences, a
tion is quite similar to the “B@(6,8)” model of Ref. 35(as  relatively tedious procedure. Two other aspects of the present
reported in Ref. b but utilizes a more sophisticated repre- work involve extending the ISE method to allow it both to
sentation of the long-range part of the potential. While quali-generate analytic partial derivatives and to simulate the type
tatively quite similar to previous potential energy surfacesof hyperfine transition observed by Waaijer and Rétss.
for this system, the fact that the JBurface accurately re- In the following, the three-dimensional “exchange-
produces the hyperfine datufhfor which the earlier sur- Coulomb” (XC) potential energy model used herein, and the
faces gave very poor predictiof@dicated that its potential manner by which it can be modified or “morphed” by the fits
anisotropy for complexes formed with ground stéte=0)  to experimental data are described in Sec. Il. Our enhanced
H, was substantially better than that of the earlier surfacesversion of the ISE method for calculating eigenvalues and
Moreover, that analysis was the first to discern a measurableigenfunctions for vibration-rotation levels of atom-molecule
contribution of theP,(cos#) potential anisotropy for any of complexes is described in Sec. lll. The experimental data
the H,—Rg systems. used and some aspects of the fitting procedure are then de-
McKellar has now obtained a new body of infrared andscribed in Sec. IV, and the resulting optimized XC potential
far-infrared data for bB—Kr and D,—Kr which is more ex- energy surface for B-Kr is presented and compared with
tensive and substantially more accuré@stimated uncertain- the best potential from the literature in Sec. V. Our conclu-
ties +0.004 crit) than the data available previoudfyThe  sions are then summarized in Sec. VI, while the Appendix
main objective of the present work is to utilize these extendescribes issues encountered in using the resulting recom-
sive new high resolution IR data and the hyperfine datum ofmended potential for practical calculations.
Waaijer and Reu$s to determine the best possible three-
dimensional potential energy surface for this system. Thél. MODEL POTENTIAL USED FOR H ,—Kr
zg?gza:]iigs %LZ?t?r:eafg:l:ﬁ%yg apnodtei)t(izn;u?;a?:ss?\onu%v blg The earliest v_vork in this field_ used either_purely empiri-
more precise and reliable that those reported heretdforé cal model potential energy functicher potential forms in-
Experimental nd virid and diffusiort” fficient r. corporating f|_xgd, theoretically knowp anisotropic d_|sper5|on
perimental secon; a USIOr™ COETICIENtS are o hargy coefficientd:>#° However, it would be virtually
used to prowdg an independent assessment of the quality ﬂﬂpossible to determine purely empirically a sufficiently
the new potential ener.g)'/.surface.. large number of parameters to characterize fully the detailed
To date, no fullab initio potential energy surfaces have

b ted f Kr. This | ¢ - ) th shapes of the potential surfaces for systems with even mod-
een reported for ki-Kr. This is not surprising since the erately strongly anisotropic interactions. At the same time, in

large numbers of electrons involved would challenge eve@pite of remarkable advances @b initio methods for de-
tr;e %eSt :upermolfculle -typg elec;romc strulcturs pkr]o?lramécribing weak interactions, for all but the simplest systems
of today. However, for interactions between closed-she SP€hey are still unable to provide a fully satisfactory description
cles remarkably successfu_l_m_ethods haye beer_1 develop%ql such interactions. On the other haradh initio or appro-
which are based on a partitioning of the interaction energy, ooy chosen model potential energy surfaces of even
into a number of components which can be estimated fairly, ,jorate quality should incorporate most qualitative features
accurately at relatively low levels of ~computational of 16 shape of the true surface. Thus, an increasingly com-
effort.”™=""""A potential function of this type is the basis of oy anproach has been to start with a realistic theoretical
the present anaIyS|s.. ) " ) potential energy function, and then to globally modify or

) A least-squares f|tt!ng schemfa for refmmg a t_r|aI pOten'morph it to optimize the agreement with experimental data,
tial energy surface typically requires many iterative CyCIeswith the implicit assumption that the sound physics incorpo-

in each of which the entire spectrum must be computed Q4te4 into the initial surface will make the refined potential

“spectroscopic accuracy” and accurate partial derivatives o aniitatively reliable in regions to which the data used in

each datum with respect to each fitting parameter must b anaiysis are not particularly sensitive. This is the ap-
determined. Our latest study of the-HAr systerﬁ and pre- proach used here.

vious analyseesfor H,—Ar, H,—Kr, and H—Xe achieved
excellent results using the “secular equation/perturbatio
theory” (SEPT method of Ref. 59. However, the distinctly
stronger potential anisotropy of the,HKr system(com- For interactions involving closed-shell species, a number
pared to H—Ar) gives rise to substantially stronger inter- of approaches have been suggested for constructing potential
channel coupling, and due to the accuracy of the new IRenergy surfaces as a sum(afiainly) attractive andmainly)
data® the SEPT method is no longer adequate. The presemepulsive components, each of which is obtained from a rela-
work therefore uses the ‘“iterative secular equatigi8E)  tively inexpensive calculation™*®=°8 These models can
method of Ref. 60, which is essentially exact and has beerepresent most important features of the interaction quite re-
used in a study of He—, and in the determination of alistically, including effects due to the internal bond-length
accurate potential energy surfaces from spectroscopic datiependence of the component monomers. They typically
for He—CO'*®* However, the ISE method has never pre- model the main attractive part of the interaction energy using
viously been used to simulate hyperfine transitions, and inhe best available long-range multipolar interaction energies,
the He—CO work%the partial derivatives of level energies corrected for the neglect of charge overlap efféctisrough

rA. Exchange-Coulomb potential for H ,—Kr
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the use of multiplicative damping and corrector functions.TABLE I. Dimensionless parametes), defining our fit of Eq.(3) to our
While other approaches use supermolecule Self-COﬂSiStemlCUIated Heitler—London energies fop+Kr. Other parameters involved

! . . ) . in the fit are K=(316.88067358254 10°E,, b,=1.8165%,%, b,
field (SCPH dimer interaction energies to represent the=0.3199151, b,=0.14%;", and the expansion coefficients of Ed): RO

(mostly repulsive part of the interaction energy, the 7493878, R2=0.0256685, R“=-0.0013078, and RY=
exchange-Coulomb or XC modéf***"used herein em- -0.0005784,.

ploys the Heitler—London interaction ener@ire sum of the

first-order Coulomb and exchange energfes this purpose. p K A=0 A=2 A=4 A=6
Sin_ce it only requires the SCF wave functi_ons for_ the inter- 0 10 01814 0.0095 0.0014
acting monomers, the XC model is, in principle, quite easy to 1 0 0.0 ~0.0742 -0.0137 0.0
apply. 2 0 0.0 0.296 -0.019 -0.021
The present work uses the Jacobi coordinatesf, R 3 0 0.0 0.0 -0.23 -0.08
=RR, and#, wherer is a vector of length joining the atoms 0 1 1.3029 0.657 0.0459 0.005
in the diatom,R a vector of lengttR running from the mid- 1 1 3.145 0.432 -0.011 0.0
int of the diatom bond to the Kr atorh.and R i 2 1 1.83 0.95 0.0 -0.12
point of the diatom ?nA o the Kr atorn,andR are uni 3 1 0.0 0.0 —0.08 05
vectors, andd=cos(f-R). In practice, the diatom bond 0 2 0.632 0.832 0.107 0.01
lengthr is replaced by the dimensionless stretching coordi- 1 2 4.0 2.01 0.09 0.0
nate é=(r-ry)/ry, where the fixed reference distancg 2 2 7.9 2.4 0.0 0.2
=1.448 739, is the expectation value af for H, in its 3 2 5.4 0.0 -19 0.0
ground rovibrational level® As in our study of H—Ar,” the 0 3 0.03 0.47 0.12 0.0
XC potential is then written as 1 3 1.29 24 0.0 0.0
2 3 6.7 3.0 0.0 0.0
V(R 6,£) = TEL (R 6,) + AEC(R, 6,9) M S 00 00 00
=FEHL (R 6,9 - G1a(R,0)
12 E(HlE(R: 0,6 = K g~ (R-R (bg+byz+b,2)
X 2 f(ROCH(60,E)/R" (1) s 3 6
n=6(2)
x 2 2 2 ané?P,(coso), (3)
with the long-range interaction coefficients being expanded k=0 p=01=0(2)
as in which z=(R-R)/(R+Ry), au=1, and R=R(f) is a
nea fixed reference distance functiqeee below. In this least-
C.(6,6= > CMHP,(cosh) (2)  Squares fit, the weight associated with eEﬁﬂ(R, 0,&) da-
m o) ' tum was the inverse square of an uncertainty defined as 0.1%

of its value. The individuala(”k) coefficients defining this

in which P, (cos#) is the usual Legendre polynomial of order function have no particular physical significance, so the fact
\. Here, Efjﬂ is the first-order Heitler—London interaction that a number of them are not statistically significant and are
energy, and the main attractive part of the poteni&lc, is  rounded to zerdsee Table)lis of no concern.
an individually damped, overall-corrected, dispersion plus  Aside from the restriction to even Legendre angular
induction energy series representing the second- and highefinctions, reflecting the homonuclear symmetry of, keind
order Coulomb interaction energy. The individual dampingthe fact that it dies off exponentially at large the algebraic
functions f, take account of non-negligible charge overlapform of Eq. (3) has no particular physical significance other
effects on the individuaR™ multipolar contributions to the than that it should give a good representatialative to the
second-order Coulomb interaction energy and prevent thesshosen 0.1% relative uncertaintiesf the 120 ab initio
inverse-power terms from diverging at smRIP*®>The am-  Heitler-London energies. However, we chose to define the
plifying “corrector” functionG,, corrects for the omission of (in principle, arbitrary reference distanc®=R4(6) as the
additional higher-order inverse-power terms from the potenpositionR,(8, £=0) of the (angle-dependentadial potential
tial model, as discussed beld%**°'Finally, the quantitys ~ minimum for the monomer stretching coordinate fixed¢at
is an empirical scaling factor to be determined from a fit to=0. In practice, an initial representation Eﬁﬁ is obtained
experimental data, as discussed in Sec. Il B. using some preliminary constaRt value, and the resulting

Values of the Heitler—London interaction enetgy, for E\}) function is then combined WithAE to yield an overall
H,—Kr were calculated using a version of th®DPAC  potential from which the actuaR,(6,£=0) values may be
prograni® which incorporates the Hayes—Stone perturbatiordetermined. The latter are then fitted to the angular expan-
theory progran‘i".7 The calculations are analogous to thosesjon
reported earlier for a fixed fbond length of =1.4a,,°® and
are based on high quality SCF wave functions for the iso-
lated monomer§? Heitler—London energies were obtained at
six equally spaced values & (3a,<R=<8a,), four values
of 6, and five H bond lengths(1.1a,<r<1.9,).”° These  Repeating the fit to th(E(Hlﬂ data with Rg defined by itera-
120 computed energies were fitted to the form tively refined versions of Eq4) yields rapid convergence to

6
R(A) =Ry(6,6=0)= > RMP,(cosb). (4)

\=0(2)
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TABLE Il. Values of the{A,}, {B,}, and{D,} constants characterizing the
damping functiond (R, ) of Eq. (5), in atomic units(from Ref. 65.

n=6 n=8 n=10 n=12
A, 0.364 8 0.307 3 0.2514 0.2197
B, 0.033 60 0.024 69 0.023 79 0.019 64
D, 0.001 651 0.001 227 0.000 566 4 0.000 416 8

J. Chem. Phys. 122, 084321 (2005)

that £ dependence is absorbed into other parts of the model.
Note that in contrast to the situation for the representation of
Efjﬂ where the values d®,(6, £=0) affect the representation

of the interaction but not its values, the fact thRt

=R (0,£=0) characterizes the onset of the damping of the
multipole expressions for the various dispersion energy
terms means that idoes affect the magnitude of the
AE(R, 6,¢) contributions to the overall XC potential func-
tion.

the desired self-consistent form. This approaCh yle|dS avery An|Sotr0p|C d|SperS|On and induction coefficients

precise representation of ttad initio EHL values with dis-

”(g) for H,—Kr and other H—Rg interactions have been

crepancies which are on average only 0.58 times the aSS'Q”‘?é‘ported by Wormer, Hettema, and Thakkbthe dispersion

(0 1"/@ uncertainties. The resulting constaktsb;, aék), and

coefficients being calculated from dynamic multipole polar-

™ defining thisE\;, function are listed in Table I. Note that izabilities while the induction coefficients were generated

our part|cular def|n|t|on oR; affects our analytic represen-

from the multipole moments of Hand the static polarizabil-

tation of Ey;;, but does not significantly affect the shape ofities of the atoms. Vibrationally averaging theab initio

the resulting analytic function.
The multipolar representation used foE. [see Eq(1)]

is based on the best available values of the dispersion anglggoy, and 5. 04%

induction coefficient<,(6, &),

and corrector functions

f(R,6) =[1~

and on the fixed damping

~An(SR-Br(SR*-D(SR*Jn. (5)

Gya(R, 6) = 1 + 27.7@ 0-6850SR-0029 98SR? (6)

in which Sis a system-dependent scaling factor. Following

results forCg for the ground vibration-rotation state of,H

yielded C” and C?’ values which were, respectively, some
higher than the accurate values determined
by constrained dipole oscillator strengthDOSD)
techniques? The “theoretical’ CL(¢) and C2(¢) values
used here were therefore obtained by scaling aheinitio
results of Ref. 71 to reproduce the DOSD values. The result-
ing set of long-range coefficienfégx)(g) are listed in Table
[, together with estimates of their uncertainties; for-6
athese values contain both dispersion and induction contribu-

widely used approact?, “***'these functions are defined tions. Note that in Eq(1) we have assumed that the induc-

by scaling the radial coordinate of the analogous functio
determined for the nonbonded,(.}) interaction, which are
known essentially exactf?">"*In particular, the constants
A,, B,, andD,, are those determlned for thezﬁz ) interac-
tion (which corresponds t&=1);°® they are listed in Table
Il. As in previous work**%he scaling factos used to
map the functions derived forZIé?EJ) onto the range of the
H,—Kr potential is defined a§:R,';2/Rm(0,§:O), where
R(2=7.82, is the position of the K®%) potential mini-
mum. As outlined above, the values &,(6,£=0), and

hence ofS=5(6), are determined iteratively once the rest of

the potential is specified. WhilR,(6) (and henceS) could
also be expressed as a function&fthat would complicate
the potential model, and since the effectéadn the potential
energy surface in the region of interest is relatively mode

ngion energy damping functions are the same as those for the
corresponding dispersion terms. This cannot be justified
theoretically, but little is known about the damping of induc-
tion energies for interactions involving molecules, and since
the attractive part of the J4Kr interaction is dominated by
the dispersion energy, error due to this approximate treat-
ment of the induction damping has little effect.

In our analytic representation &fE~(R, 6, £), the theo-
retical long-range potential coefficients are expanded as

2
c(9= 2 Cye (7)

The fact that the B—Kr potential energy surface must col-
stlapse to the one-dimensional He—Kr potential curvetas

TABLE Il Ab initio values of composite dispersion and induction coeffici@t¢) for H,—Kr, in atomic units(Ref. 71. The values oC\” andC? were
scaled to reproduce the accurately known values obtained from dipole oscillator strength dist(iRefiof2, see text while ther =0 values(for He—Kr) are
based on those of Ref. 76, but W'ﬂéo) scaled to take account of reliable DOSD res(Ref. 75. Values ofC(loz) were defined by Eq.9) with uncertainties

taken as +55% for >0 and +100% for =0.

r/ag 3 Cy’ Cy’ Cy’ cy’ Cy’ Cio Cio Cio Cio

0.0 -1.000 13.258 0.0 254.5 0.0 0.0 6 650.0 0.0 0.0 0.0

1.0 -0.310 28.947 1.6793 679.61 74.619 2.2671 19 345.0 2 350.2 68.618 12.068

1.2 -0.172 33.498 2.5322 809.43 124.53 5.119 23 625.0 4129.6 202.31 23.895

14 -0.034 38.239 3.5537 951.61 194.49 9.6448 28 467.0 6733.9 402.78 36.897

1.449 0.000 39.416 3.8288 988.1 215.06 11.029 29731.0 7515.8 464.78 40.453

1.65 0.139 44.264 5.0403 1143.5 315.18 18.136 35215.0 11 396.0 803.44 58.548

2.0 0.381 52.462 7.3341 1430.3 557.59 36.379 45792.0 21 259.0 1909.5 120.25

3.0 1.071 68.14 11.7626 2227.1 1804.4 120.21 80 049.0 80925.0 13329.0 721.65
Uncertainty(r > 0) (r>0) +1% +1% +5% +13% +20% +13% +25% +42% +67%

Uncertainty (r=0) +5% +15% +30%
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-1 (r—0) means thaCff)(§=—1)=O whenh >0.* This con-  uncertainties which tend to increase rapidly withand \,
dition is used to define the value of the highest-order expanand it introduces an unnecessary and inappropriate degree of
sion coefficient for each combination nfand\ in terms of  rigidity into a potential model.

the others, Following Refs. 11 and 7, the present work treats the
theoreticalcg”)(g) values of Table IIl asdb initio data” and
simply includes them with the spectroscopic line positions in
the least-squares fit analysis. This in turn makes G)&
coefficients of Eq(7) free parameters in the fit. While this
For N=0, however, this collapsed-diatom limit constraint might appear to introduce an excessive number of empirical
was imposed by including the known values of theparameters, in practice their values are mainly determined by
Cn(He—Kn coefficientd®>’® for n=6, 8, and 10 aC(¢  the ab initio cM(9) “data,” and for the most part are only
=-1) data in the fit to Eq(7). modestly affected by the spectroscopic data. Moreover, be-

In our analogous study of #4Ar, the inverse-power ex- cause those data are not particularly sensitive to theie-
pansion comprising the last term in E@) was truncated at pendence, the anisotropic dispersion coefficidtitsse for
the term varying aR°, and it was found that the potential \ >0) were were fitted as groups represented by the expres-
could not adequately represent the experimental data unlesfons
that last term was scaled to be far stronger than was sug-
gested by the theoretic&l')(¢) values’ This suggests that » o A K
the fit to determine that potential was sensitive to the neglect Cr'(9=Qn k% Criné' (10
of R™ contributions forn>10. The present work therefore -
included an isotropia=12 term in the inverse-power expan- in which the coefficient@ﬁ;{‘h (in which th denotes “theory”
sion of Eq.(1), but since no theoretical estimates are avail-are fixed values determined purely from independent fits to
able, its values were approximated using a recursion relatiothe theoreticacﬁ”(g) values of Table Il to Eq(7), and only
suggested by Tang and Toenniés: the group scaling paramete(@é” were allowed to vary in the

0)/ &1 — ~(0) () (0)/ /13 global analysis.

Ci2(£) = Cs (HIC1o(§)/Cy (O ©) Treating theC\* [or Q,(\)] parameters as variables cer-
The corrector functionG,, was determined in the same tainly provides a degree of flexibility in XC potential energy
manner as was th®,, function used in the earlier version of surface. However, the main means of modifying #hpriori
the XC potential energy mod&*®*%in which the long-range  XC(0) surface to optimize the agreement with experimental
dispersion energy expansion was truncated aiRit€ term.  data is through the factdg which scales the mainly repul-

In particular, with thef (R, ) functions defined by Eq5),  sive Heitler—London part of the interaction energy. It is ex-
the parameters defininG,, were determined by fitting the pected to be a weak function &, 6, and £ A4 ow-
accurately known values &E-(R) for the I-b(SE:) interac-  ever, in the present work it proved adequate to represent it as

kMg
0 (N, e

)
C)r:'kma); = (— ]_)kmax 1 2 (— 1)kC}r;'k, forn > 0. (8)
k=0

(n,\)
kmax

tion to the expression GlZ(R)EﬁEG(Z)fn(R)Cn/R”. a function of§ and ¢ only:

Our preliminary ora priori version of the XC potential NN
for H,—Kr, identified herein as the “X@©)” surface, is given =3(0.8) = F. &P, (cosf 11
by Egs.(1)—(9) with F=1, E\’ defined by the fit of the §=8(6.0 3(2) kEO M P(c0S0). ()

calculated energies to E() yielding the coefficients listed o o
in Table I, and the expansion coefficielﬁ!ﬁ’k of Eq. (7) More sophisticated parametrizations ®fwere also exam-

determined purely from fits to the theoretical values listed inN€d: but the resulting marginal improvement in the quality
Table I1l. While realistic, this three-dimensional potential is ©f fit to the experimental data did not justify the increased
not expected to be quantitatively accurate. The rest of thi§OMPlexity.

work is concerned with using a fit to experimental data to _ " sSummary, the free parameters varied in the fit to the

determine the optimized “X@t)” potential for this system. XC model potential for H-Kr are theF, , expansion param-

eters of Eq.(11), plus the mdmdualCﬁ’k expansion coeffi-

cients for some combinations of and n, and the group

B. Fitting a XC model potential to experimental scaling parameter@ﬁ‘) for others. Thea priori initial trial

data XC(0) surface, which haso empirical parameters, is ob-
Part of the success of the XC potential function model intagp)ed by settingFo o= 1}\ kand all otherF, =0, fixing xak”

yielding reliable (rare gas-(rare gas and (rare gay- Qn -+ and setting allCy™ coefficients a(tmthe value€,,

molecule potentials“**"has been due to recognition of OPtained from fits to the sets ab initio C*(¢) values.

the fact that since theoretical inverse-power long-range po-

tential coefficients are usually.n.ot exact, fits tol e>.<perirr.1enta|”_ COMPUTATIONAL METHODS

data should allow those coefficients to vary within their es-

timated uncertaintie€ ° In contrast, in most previous mod- The previous generatiéh?® of infrared data for H—Kr

eling of multidimensional van der Waals potential energy(those used to determine the potential function of Rehagl

surfaces, the long-range potential energy coefficients werkne position uncertainties c£0.02 cm?, and the SEPT pro-

held fixed at the best estimates yielded by theory. That apeedure of Ref. 59 yielded a more than adequate level of

proach overlooks the uncertainties in those calculated valueaccuracy for the requisite calculations. However, the new
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data of Ref. 34 are substantially improved, with typical esti-rivative with respect tg,, one of the parameters defining the
mated uncertainties of +0.004 ctand the SEPT method potential energy functioV(R, 6, ¢) is

proved to be no longer adequate. In particular, for a realistic
trial H,—Kr potential, comparisons with results generated us- Eq - <q, NR 6,6 ‘ W > (13)
ing Hutson's (essentially exagtBOUND progran‘?O showed P “ p; “

that for truly bound states the SEPT method could yield ei- ~

genvalue predictions with errors of up to 0.008¢map- WhereW,=¥,(r,R) is the eigenfunction oH, correspond-
proximately twice the uncertainty of the new line positidhs. ing to eigenvalué,. In a coupled-channel method the eigen-
On the other hand, whileounD gives quite reliable eigen- functions ofH, may be expanded as

values, it does not take account of the shifting and broaden- .

ing of metastable levels and cannot readily yield the wave  W,(r,R) = 2 x2(R®M(r,R), (14)
functions required for direct calculation of the partial deriva- a

tives with respect to potential parameters needed for a least- . My By . .
squares fitting procedure. Thus, a better method was ré/yherea is the state label and;™(r,R) is the basis function

quired characterizing a particular chanreel In the space-fixed co-
The method for calculating the transition frequencies();]d'm"tel.ng/Sterl1 ugeld hﬁr@:{v’J(’jn.”’l’J"\rfJ} .?)nd.thel
(and predissociation linewidthsised herein is the fully re- ¢1annel In exa={v, .1}, wherev and] are the vibrationa

contracted version of the ISE method of Slee and Le ?ﬁoy. and rotational quantum numbers for thg Hatom’.n” and|
As is BOUND, this method is alséin principle) exact for truly are the quantum labels for the stretching vibration and rota-

bound states, and ISE eigenvalues calculated forKi tion of the_ van der Waals bond a#i andJ andM, are the .
agreed with those generated frorBOUND to within total rotational angular momentum quantum number and its
105 et for all truly bound states of b-Kr. The ISE space-fixed projection. In addition, the space-inversion parity
method is also very efficient, with a computational effortpand the parity fqr_ permutation of two hydrogen_ atosree
which grows relatively slowly with the number of coupled conserved quantities, but to simplify the notation they are

channels, and since it gives wave functions naturally, it ma)ysually not shown. Of these indices, orly,M,,p,s} are

readily be adapted to calculate spectroscopic intensities or t6uly good quantum numbers ¢f,, although the monomer
apply a Hellman—Feynman theorem procedure to calculatiibrational indexv is usually a near-exact quantum number
the partial derivatives required by the fitting procedure.@ndn, is an unambiguous state label. For complexes formed
Moreover, its structure very naturally incorporates a perturfrom diatomic hydrogen, a single value pfalways domi-

bative treatment of the coupling to open and to distant closeflates the wave function for any discrete state ansl an
channels. approximate quantum number which provides a useful zeroth

order ordering of the various states. For other species, how-
ever,j mainly serves as convenient “uncoupled limit” state-

A. Calculating derivatives with respect to potential ordering label and is completely mixed.
energy function parameters within the ISE In the ISE method, the overall rotation and diatom vibra-
method tion basis functions characterizing the various coupled chan-

In each cycle of a nonlinear least-squares fitting proceN€!S have the form

dure, values of the partial derivatives of the calculated value
of each observable with respect to each parameter of the
model are reqwreocgs.lllr(l)’lolur previous ap_phc_atIOHS of the ISEp, \hich @,j(r) is a radial wave function for a free diatomic
and SEPT n_1_eth0 o the_ partial derivatives of the ob- hydrogen molecule and

served transition energies with respect to the potential energy

funct_ion_ parqmeters were calculated numerical_ly from sym- )/j]IMJ(f’é) => C(j,|,‘];mj’mlyMJ)Yj'm(f)Ylyml(é) (16)
metric first differences. However, the computational cost of mj.m J

that approach is high, since for each cycle of a fit to a po- _ ) _
tential energy model with\,, fitting parameters the whole are the usual total orbital angular momentum eigenfunctions
simulation must be performed somé\ 21 times. In the for an atom-linear molecule system, defined as linear combi-
present work we therefore implemented the Hellman-nations of products of the spherical harmonic eigenfunctions

Feynman theorem for calculating the partial derivatives Oij,mj(f) and Y|,m|(li) associated with the free rotation of the

the eigenvalues directly. diatom and of the molecular axi®, respectively, and
For an atom-diatom van der Waals molecule, the Hamil-c(j | ,J;m;,m,M,) are Clebsch-Gordon coefficients. Since

tonian governing the nuclear motion may be written as  the interaction potential for the Hdiatom is accurately
- 52 72 known?® accurate diatom eigenfunctiong,;(r) may be
Ho(R,r) = - 2—V2 - V&+V(R,6,), (12 readily generated using standard methYds.

#d Hda A convenient feature of the XC potential form is the fact
in which uq4 is the normal reduced mass of the componenthat it is a linear function both of the fitting parametéxg,
diatom anduy, the analogous reduced mass for the diatomwandcﬁ*k coefficients and of the powers of the diatom stretch-
atom pair. The Hellman—Feynman theorem tells us that for &g coordinateé. This means that it may be written in the
particular eigenvalu&, of this Hamiltonian, the partial de- form

M, R) = ¢, (VI R), (15)
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kmax

rivatives of theC(x,’)(g) data required by the fit are readily
V(R 0,8 = 2, V(R 0) "
k=0

generated, since their derivatives with respect toRthgare
identically zero, and Wheﬁ.g, )(5) is represented by Ed7)

kmax )‘max
=2 &> V\ k(R P, (cos®) we have
k=0  \=0(2) )
kmax 5CE1>> )(g)/&CaYk = 5nn’ 5)\)\’§k: (21)
i Z’ . kEO EWg (R0 while when Eq.(10) is used forc (&) we have
max )‘max k(n \)

max

=2 p 2 &> WYRP(cose),  (17) ICOE10QV = Sy Sy 2 Chl (22)

i=1 k=0 \=0(2)

in which{p;} are the adjustable paramet¢Fs ,}, {Q(”} and

{C" K of Egs.(11), (10), and(7), respectlvely, and the func-
tionsW, (R, ) = dV(R, 6)/ dp; andW (R) are properties of

the XC(0) surface and do not change from one cycle of the f|t[ra
to the next. Since thEHL component of the XC potential
form is not a simple linear function of the Legendre func- ~ On taking account of nuclear spin the total Hamil-
tions P, (cos#), the V\/f(ﬁ)(R) [andV, (R)] functions are de- tonian for our B—Rg systems may be written as the sum of

termined numerically by orthogonal projection the nuclear motion Hamiltonian plus a hyperfine Hamil-
tonian operator,

Hellman—Feynman derivatives for a hyperfine
nsition

(R = (P,(cos )W (R, 0). 18

. . Hior= Ho(R,r) + H"F (23
However, this calculation need only be done once, and the

resulting one-dimensional radiéh R) arrays stored for re- and the total angular momentum becomes
peated use throughout the fit. The computational effort saved Eol+J=l+i
. . o . . . = =1 +j+I, (24
by this step is quite significant, a point favoring potential
functions of this form. In the present work it was found thatin which F and Mg replaceJ and M; as the good quantum
these radial functions need only be generated\fer6; ex-  numbers, the state label becomes{v,j,n,,l,J,I,F,Mg}
tending the angular series t0=12 affected the B+Kr ei-  and the angular basis expands to include the nuclear spin
genvalues by less than 0.000 01¢m eigenfunctionsy, (I. In this case the total angular momen-
The partial derivatives required by the least-squares fit;, 1, wave functlons become
ting procedure may be written as
ZiNF= 3 CAL1LF;My,M MM R)Y, (1) (25
v vioplw)= | R XRIR am
@ and the total basis functions characterizing the different
X(q)J MJ|&V(R 0, 5)/5D||(DJ Myy (190  channels are the product functiopg(r) ZF
The present discussion of hyperfine splittings in(iH
in which the notation(®2"]...|®2") implies integration ~=0,j=1)—Kr assumes thdtis a good quantum number with

over all coordinates exce|5t82 Using Egs.(15) and (17), the ortho-H, value of I=1. As a result, when the nuclear
spin/nuclear spiSS and nuclear spin/rotatiofSR) inter-
(@IM[V(R, 6,8)/ap| D) action terms for the Kimolecule are included in the Hamil-
tonian, H'F=HSS+HSR eachJ level of a complex formed
Kmax from ortho-H, is split to three levels, corresponding B
—E (il &1 YN MIW (R, 49)|37J/|/ =J-1,J, andJ+1. Since the matrix elements of the hyper-
fine Hamiltonian terms are typically ¥@imes smaller than
Kmax Mmax the spacings between adjacent nuclear motion levels for
= 2 <<puj|§k|<pv i )E (R)fx(j,l;j’,l’;\]), (20 these species, the hyperfine level shifts may be evaluated
using first order perturbation theory, as the expectation value
in which  f,(j,1;j’,1":9)= <yJIMJ|p}\(COS(9)|yJ,I, are of H"F over the total wave functioff. Because the off-

Percival—Seaton coeff|C|ent$wh|ch do not depend on diagonal coupling between differedtvalues is very weak,
M,).£%3* As mentioned above, at a chosen grid of poiiRg those terms are neglected addreated as a good guantum

the various radial functlon\s\/A (R) may be calculated once number’>®> Moreover, the matrix elements &7 with the

and stored for use in all subsequent eigenvalue derivativBasis functions of Eq25) happen to be diagonal Irand the
calculations and all subsequent fit iterations. In the preserfiamiltonian matrix is block diagonal i, Mg, 1,J,p,s}.

case, the radial grid used typically has ca. 3000 points and Because of the weakness of tHEF interaction, it is also
only 70-90 different radial functions are required, so thereasonable to neglect it in the ISE eigenvalue calculations
storage requirements are quite modest. Note too that the deshich determine the total wave function for leval
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TABLE IV. Experimental diatom vibration-rotation energigsg(v,j) (in cm™) which define the asymptotes of the radial channel potentials involved in the
calculations.

v j=0 j=1 i=2 i=3 j=4 i=5

H, 0 0.0 118.486 75 354.373 50 705.518 86 1168.798 23 1740.189 10
1 4161.1687 4273.741 44 4 497.839 10 4831.392 15 5271.380 40 5813.922 86
2 8087.0050 8193.798 15 8406.365 0 8 722.705 65 9139.9025 9654.2011
3 11 782.360 0 11 888.510 0 12 084.701 15 12 384.084 27 12 778.818 95 13 265.276 77

D, 0 0.0 59.780 42 179.064 10 357.314 42 593.716 80 887.214 42
1 2993.6100 3051.284 72 3166.359 6 3338.302 62 3566.324 7 3849.405 72
3 5868.149 5923.746 6 034.678 6 200.426 6 420.220 6 693.056
3 8625.71 8679.24 8786.11 8945.73 9157.42 9420.29

C. General considerations and treatment of
Y, =2 ™ 2 (Rg, () ZFMF, 26
" g " ad)n”( )¢,1) i (26) metastable levels
L)

All assigned observed IR transitions of,HKr and
D,—Kr are associated with groumg=0 van der Waals bond
stretching levels, and the anisotropic coupling is fairly weak.
The zeroth order secular equation basis used in our ISE cal-
culat|ons therefore consists of all radial eigenstates supported
by the effective radial “distortion” potentfé’lassomated with
the dominant channel. In practice, this means that two zeroth
SEHF < e > order basis functions were used for levels correlating with

|

in which an (R) is a radial basis functiogn,=0,1,..) for
channela, as determined by the ISE procedﬁ?él’he sensi-
tivity of a hyperfine transition energy to the intermolecular
potential therefore arises from the fact that it is sensitive to
the precise mix of the different channel basis functions i
this overall wave function:

(27) small values ofl, and one for largé-states. All of the cor-
rections iteratively generated by the ISE procedure were
For an infinitesimal c:hangép in one of the potential combined(recontracteglinto a single effective radial correc-
parameters, the effect on the total wave function of the retion function for each channéf, which means in practice
sulting change in the HamlltonlaﬁHtot may be calculated by that ISE iterations past the first one used a total of three basis
perturbation theory, and the associated first-order wave fundunctions for small levels and two for largé-ones.

tion yields In the calculations reported herein, values of the atomic
masses and physical constants were taken from Ref. 87. As
Y Yl VI |Y ) no Kr isotope splittings were observed in the infrared spec-
—M= Y, (28

tra, the spectroscopic data simulations were performed using
the mass of the most common isotof&r (57% natural

in which the numerator involves the same potential deriva@Pundance Note, however, that use of the abundance-
tive matrix elements seen in E¢L9). Because the Hamil- averaged atomic mass yields a reduced mass differing by

tonian is block diagonal ifF,Mg,J,1,p,s} and matrix ele-  ©nly 0.003%, a change which would have a negligible effect
ments ofHHF are diagonal irl, them’ summation only runs on the calculated results. The, ldnd D, monomer level en-

over channel basis functions with label&’,j’,n’} ergies E4(v,j) which _deflne th(_a asymptotes _of the various
radial channel potentials used in the calculations are listed in

api m’ £m Em_ Emr

#{v,j,n,}: o : A
Table 1V; it is important to specify these values, since it is
Y. |fHF _ D (m) (m") the differences between the observed transition energies and
< m|H |YITY’> - Can Car ! . . . . .
N these reference spacings which allows information regarding
v U . .
o0 the ¢ dependence of the intermolecular potentials to be de-
FM ! . ..
X(ZJm (PUI|HHF|Z /|J|F‘Pv'1")<¢§u|¢i;>* termined empirically.

While the (essentially exa¢t SE method for truly bound

(29) states is explained fully in Ref. 60, the associated treatment
] ] ] ) i of metastable states deserves further comment. An exact
in whicha={v,], I} anda’={v’ J’ I}, and the hyperfine ma- oatment of metastable states would generally require the
trix elements(Zh)! i <Pu1|HHF|Z 19, @orjr) are generated from yse of scattering theory methods, which are not readily com-
the H, spin Coupllng constants, as described in Refs. 85 ang@atible with an iterative fitting analysis of discrete spectro-

59. Note that an approximation implicit in our use of the scopic data. We therefore followed the approach of Refs. 60
Feynman-Hellman theorem for hyperfine transitions is thaind 10 in using approximate methods to calculate the effects
the wave function is actually a normalized eigenfunction ofof open channels on the energies and widths of such levels.

the Hamiltoniarﬂo and not ofH"F or ﬁtot. However, in view As discussed in Ref. 60, two types of metastable levels
of the small magnitude of the hyperfine splittings, this shouldmust be considered. The first are “Feschbach predissocia-
introduce negligible error. tion” levels: these are levels of the zeroth-order effective
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one-dimensional distortion potenfialassociated with the In the conventional treatmefit®®the outer boundary condi-
dominant channel, which lie above the dissociation asymption imposed on the quasibousi@inneling level wave func-
tote for one or more of the channels to which it is coupled.tion requires it to match an inwardly increasing Airy function
For example, a “bound{low |) state of B(v=1,j=2)—Kr  at the third turning poinR;=R3(E) on the outer wall of the
lies above the asymptotes both for rotational predissociatioeffective potential barrier, and on convergence the resulting
to yield Hy(v=1,j=0) and for vibrational predissociation to radial eigenfunction is normalized on the inter{alR;] and
yield H,(v=0,j=<8). The level shift and broadening due to set to zero forR>R;. However, values of that function
this type of coupling is calculated using the Feschbach forwould abruptly drop to zero at the first radial mesh point past
malism used in the SEPT procedure of Ref. 59. Such calcur;. While it has no effect on the calculated single-channel
lations are perturbative and can, in principle, be performedevel energy or width, this discontinuity is inappropriate for a
without including any basis functions for the open channelgealistic radial channel function and tends to cause instabili-
in the ISE basis. However, to improve our accuracy, basisies when such functions are used later in the ISE procedure.
functions associated with any bound levels of the distortionTo correct for this, after the Airy function boundary condi-
potential for such open channels were always included in oution has been applied in the usual way, the resulting eigen-
ISE basis so that only coupling to the continuum componentunction is propagated outward to the first node gasand
of the open channel had to be estimated by perturbatiotruncated there.
theory. The natural incorporation of this perturbative treat-  Note that the perturbative Feschbach formalism treat-
ment of level shifts and broadening due to ogendistant ment of the effect of open channels on level energies and
closed channels into the normal computational procedure isvidths also applies to quasibouftdnneling-predissociation
one of the great advantages of the ISE method. levels which are coupled to channels sharing the same dis-
As discussed in Ref. 60, errors in level energies due tsociation limit(i.e., have the sameandj) but have different
this perturbative treatment are generally expected to be onlyvalues. Thus, as far as coupling to open channels is con-
a small fraction of the level widths, although the errors in thecerned, bound and quasibound levels are treated using the
analogously calculated widths could be somewhat largempproximate SEPT procedutéWhile this introduces some
particularly for very long-lived states. To allow for this ad- additional error, only a small fraction of the assigned transi-
ditional source of uncertainty, the total uncertainty used tdions involve quasibound levels, and most of them have
weight experimental transition frequency ‘involving one  moderately large widths which leads to them being substan-
of these Feschbach-metastable levels was tially deweighted by Eq(30). Thus, this small additional
possible source of computational error should not affect our
analysis significantly.

Utoti = \"’(Uexpj)2 +(0.20)%, (30)

in which ug,; is the estimated experimental line position
uncertainty and’,,, the total calculated width for the predis- |V. THE ANALYSIS
sociating upper or lower leveh. A
The second type of metastable behavior is the “tunneling
predissociation” of levels which lie above the dissociation  The experimental data set used in the present work con-
limit associated with the diatom vibration-rotation energysists of McKellar’s new IR data for H#-Kr and D,—Kr and
Eq4(v,j) correlated with that particular state, but are boundthe one hyperfine transition for HKr reported by Waaijer
behind a(mainly) centrifugal potential energy barrier associ- and Reus$*3* There are two key differences between the
ated with the effective diagonal potentfafor the dominant new IR data and those used in the most recent previous
contributing channel. This type of predissociation affects theanalysis’® The first is the substantially improved precision
highest observedl levels of complexes formed from br  and larger number of assigned transitions; the line position
D, in any given internalv,j) state. Following Ref. 60, the uncertainties associated with most of the new data are
effective radial channel basis functions used to represer.004 cni, which is almost an order of magnitude better
such “quasibound” levels were determined using the Airythan the 0.02—0.03 crhof the measurements used in Ref. 6.
function boundary conditioff with the tunneling predisso- This improved resolution allowed many of the lines in the
ciation width being calculated semiclassic&fly® Single-  congestedP- and R-branch regions of the H-Kr Q,(1) and
channel tunneling predissociation widths obtained in thisS;(0) spectra to be resolved, and comparisons with simulated
way are accurate to within a few percent of their magnitudespectra allowed manjthough not all of those lines to be
and the associated level energies are also accurate to withiraasigned uniquely so they could be used in the analysis.
few percent of those widths. This is as good as the accuracy The second important feature of the new IR results is the
with which the widths and positions of predissociation first-time observation of transitions associated both with the
broadened lines may be measured experimentally, and henpere rotationS,(0) transitions of H—Kr and with theQ;(0)
is satisfactory for present purposes. Note that these tunnelingbration-rotation transitions of ;)34 When combined with
level widths would be combined with any Feschbach predisthe existing[S;(0), Q;(1) and S;(1)] vibration-rotation data
sociation contributions to yield the total level widily, of  types, the former make the analysis much more directly sen-
Eq. (30). sitive to the¢ dependence of the potential anisotropy. Simi-
One minor extension of this second procedure introdarly, the newQ;(0) (Av=1,j'=j"=0) data for D,—Kr sub-
duced here concerns the larBezutoff of radial basis func- stantially improves the ability of the data set to delineate the
tions ¢§U(R) associated with tunneling-predissociation levels.¢ dependence of the isotropic part of the potential energy

. Data used in the analysis

Downloaded 05 May 2005 to 129.97.80.195. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



084321-10 Wei et al. J. Chem. Phys. 122, 084321 (2005)

surface. Unfortunately, in contrast with the most recent IRfew observed peaks in the IR spectra which had more than
study of I-b—Ar,24 the new B—Kr and D,—Kr experiments one possible assignment were omitted from the fit.
were unable to resolve transitions involving either the ex-  Following Ref. 90 the convergence of our nonlinear fits
cited n,=1 van der Waals bond stretching levels or vibra-was determined by requiring that the changes in all param-
tional overtoneAv =2 transitions of hydrogen. However, this eters be less than the associated “parameter sensitivities,”
new data set is certainly much more sensitive to the details aind the numbers of significant digits required to fully repre-
the potential anisotropy in the attractive well region thansent each of the final fitted parameters was minimized using
were the earlier measurements. the sequential rounding and refitting procedure described
In summary, the present analysis simultaneously fits taherein.
143 mid- and far-IR transition frequencies fog+Kr and 76
for D,— Kr.2* This is more than three times as many uniquelyy. RESULTS
assigned lines as were used in the fit which determined the . .
best previous potential for this systérﬁ'.he one hyperfine A. Optimized XC potential energy surface for H  ,—Kr
transition of H,(0,1)—Kr reported by Waaijer and Reu%s, A simulation of the data using theepriori XC(0) poten-
which provides a very sharp measure of the radial average afal energy surface with no free parameters yielded the over-
the potential anisotropy for a complex formed from groundall dimensionless deviation ofide,,=90 (which indicates
stateortho-H,, was also included in the experimental datathat on average, the discrepancies with the input data are 90
set. Finally, the data being fitted also included thdifidlud-  times their uncertainti@sThis is similar to the level of dis-
ing C(loz) values generated from E)] nonzero theoretical agreement found in Ref. 7 for the analog@upriori XC(0)
Ch(¢) values listed in Table IIl, each weighted by the inversesurface for H—Ar. Relative to the high quality of the spec-
square of the associated uncertainty. troscopic data, this is not a bad level of agreement, especially
in view of the relatively modest level of computational effort
required for generating a XC-type potential surface.
B. Aspects of the fitting procedure As the long-range coefficients are mainly determined by
the input theoreticaﬂ:g‘)(g) values, our initial fits varied only
he coefficientgF, } of the corrector function modifying the
q—|eitler—London interaction energy. After some experimenta-
tion it was found that use of five,  expansion parameters,
three forn=0 and two for\=2, gave a fairly good fit, and
this parametrization was used fgrin the later stages of this
work.
The orders of the polynomials ifiused to represent the
various Iong-rangé?g‘)(g) coefficients of Eq(7) (see Table
V) were determined from independent fits to the theoretical
_ 1 Ny obs  wcalor 5 values alone. Note that fax>0, one of these expansion
dd,= N_E [Y«/,i ‘Yy,i('] /(uy;) ' (31) coefficients is defined in terms of the others using the col-
vi=t lapsed diatom limit constraint of E¢8). The absence of data
in which Yoﬁsis the known or observed value of the property involving vibrationally excitedn,=1 van der Waals bond
Y,, Y‘;'f‘i'c the calculated value, andl,; is the associated un- stretching levelwhich lies very close to dissociatipmeans
certainty. As mentioned above, for the IR data involvingthat the H—Kr IR data are relatively less sensitive to the
metastable levels these uncertainties are generated using Hepg-range potential coefficients than was the case for
(30). A given value ofdd, indicates that, on average, the H,—Ar. This was demonstrated by the fact that when all of
calculated values disagree with experimentdaly times the the{Cﬁ'k} coefficients andF, ,} parameters were allowed to
uncertainty in the data. The global dimensionless root meamary simultaneously, the fit failed to converge because of
square deviation minimized by the fit is then defined as  excessive intsﬂparameter correlation. As a result, only the
— — — — coefficients{C}*} for A\=0 andn=6, 8, and 10 were allowed
oy = {(Nydef + Ny + Nipd i) /Nyt (32 {5 vary independently in the global fits, while those for
where Nio:= (N +Nps+Nyp). Similarly, the value ofajexp =2 were fitted using the group scaling parame@f@.of Eq.
={(N,,dd +N,ddZ)/ (N, +Ny)}*? is a measure of the ability (10). The coefficients foh =4 and(n,\)=(12,0 were fixed
of the parametrized potential model to reproduce the experiat rounded values based on the fit to e initio Cff)(g)
mental spectroscopic data, while the valueddf, indicates values alondi.e., Qg‘): (1‘8:Q(1%): (102):1).
the quality of fit to theCff)(g) values of Table IlI. The values of the 19 fitted parameters defining our final
To avoid problems due to incorrect spectroscopic assignrecommended k-Kr potential energy surface, with their
ments, the initial stage of the analysis only used the com95% confidence limit uncertainties given in parentheses, are
pletely unambiguously assign€¥}(0) IR bands andN andT  listed in Table V, together with the fixe{cﬂ:ﬁ*kzcﬁf coeffi-
branches of th&;(1), $(0), andS;(0) IR bands. However, cients forA=2 (values with no uncertainties shoyyrthe
as the analysis proceeded and the valuddyf, approached requisiteR(n);) expansion parameters of E@l) and E(Hlﬂ ex-
unity, assignments for a large number of additional lines bepansion parameters of E¢3) are listed in Table I. When
came unambiguous, and they were added to the data set. Thembined with the dispersion energy damping and corrector

The present work uses an automatic nonlinear leas
squares fitting procedure to simultaneously optimize th
agreement with the three different types of ddtaithe N;
=219 infrared transition frequencig€s), (ii) the N;=1 hy-
perfine transition frequencghf), and (iii) the Ny,=74 non-
zero theoretical values oﬁ:ﬁ]“(g) (th). The ability of the
model to reproduce thdl, known values of property (y
=ir, hf, or th) is characterized by the dimensionless root
mean square deviation for that property,

12
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TABLE V. Parameters defining the optimized Xi€) potential, with their 95% confidence limit uncertainties given in parentheses, where the expansion

parameters of Eq4) are given in Table I.

J. Chem. Phys. 122, 084321 (2005)

Heitler—London energy scaling parametés,

k=0 k=1 k=2
A=0 1.016 940.0039 0.083 5(0.0186 -0.1035(0.038
\=2 —-0.055940.0012 —-0.092 9(0.0048
Long-range expansion coefficier@* (a.u)
n A k=0 k=1 k=2 k=3 k=4
6 0 39.2930.178 34.695(0.83 1.6(0.5) -8.05(0.95
6 2 3.828 83 8.254 6 3.662 -2.4023 -1.63853
8 0 977.21(18) 1119.2(81) 313.87(55) -143.2 (100
8 2 215.6 624.3 603. 194.3
8 4 11.124 41.15 44.7 14.674
10 0 29 437(1 290 42 730.(3970 22 617.(3890
10 2 7 491. 24 260. 28 450. 11 681.
10 4 470.2 2 380. 4 250. 2340.2
10 6 39.3 145. 232. 126.3
12 0 1063 800. 1410 000. 581 000.
Long-range group scaling paramete}g) n=6 n=8 n=10
[Q;” =1 for A =4 andn=12] 1.0009(0.0043 1.114(0.039 1.153(0.069

functions of Table Il they provide a complete description of Fig. 1) confirms the assertion that they are largely deter-
our final recommended three-dimensional potential energynined by the input theoretical values and their uncertainties,
surface for the B-Kr system. While this final function has a and do not have to be modified excessively to yield agree-
rather cluttered analytic form,RORTRAN subroutine for gen- ment with the spectroscopic data.

erating it may be obtained either from the autRb from The quality of the fit to the three types of data used in
the Journal’s online archivé.Note that except for some of the analysis is indicated by th}ﬂ values listed in the upper
the IeadmgC“‘ coefficients, most of the fitting parameters segment of Table VI, together W|th analogous results for the
have no physical significance. However, the quality of theXC(0) surface and for the Tilpotential of Ref. 6. The agree-
theoretlcaICO‘)(f) values does lead us to expect that thement with the spectroscopic data is remarkably good, and is
{Q(”} scaling parameters should be close to unity and thaparticularly impressive when expressed in absolute terms:
the value ofddy, for the final fit should bes1. Moreover, the the discrepancies with the experimental IR transition fre-
physical reasonableness of tagriori XC(0) potential sur- quencies are on average only 0.56 times the estimated ex-
face leads us to expect that the valueFgf, should be close perimental uncertainties, or 0.0028 tmComparison with

to unity and that the magnitude of oth® s should be analogous predictions for thee priori XC(0) surface shows
small. Tables V and VI show that all of these expectationghat our morphing procedure, mainly depending on the five
are satisfied, and the similarity of tlfeff)(g) functions for  {F, \} parameters of Eq11), improved the agreement with
the XQ0) and X{fit) potentials(dashed vs solid curves in the experimental data by a factor of about 160. The factor of

TABLE VI. Dimensionless rms deviatiorgd, for various properties predicted using the;Tiotential of Ref.
6, oura priori XC(0) potential, and our recommended Ki© potential for the B—Kr system. The values of
dd,; andddy; were calculated assuming experimental uncertainties of #5miT! and 0.3%, respectively.

Input data Potential

Number Reference T XC(0) XC(fit)
Properties used in the fit
IR data:A=ir 219 34 3.72 76.44 0.56
Hyperfine datumi =nf 1 22 3.84 705.5 1.62
Long-range coefficientsx =th 74 71 n/a 0.12 0.55
Total: A=tot 294 22,34, and 71 3.72 77.75 0.57
Property not used in the fit
Virial coefficients:\ =vir 11 36 0.48 0.40 0.43
Diffusion coefficients:\ =dif 19 37 4.31 1.42 0.74
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FIG. 2. Dependence of the potential minimum enefgy and its radial

FIG. 1. Long-range stretching-dependent potential energy coefficient0Sition (Ry) on ¢ (at £=0) for three different B—Kr potentials.

Cg“(g) for H,—Kr. The input theoretical valug&efs. 71 and 7Rand their
o o S oo oyl thir estimated uncertantésom Table I poins and
solid curves, respectively. error bar$ with the fitted functions associated with the
XC(0) (dashed curvesand X{fit) (solid curve$ potentials.
These two types of curves are of course identicalNer4,
7 difference with the quality of predictions generated frompecause the associat€y” values are fixed at unity. Fitting
the TT; surface is consistent with the factor of 5-7 improve-to the experimental data clearly has only modest effects on
ment in the precision of the IR data used in our analysisthe functions representing méﬂ”(g) values, and the agree-
More detailed comparisons of the predictions of our finalment with the input values is generally well within the esti-
recommended surface with the experimental IR data are prenated uncertainties. Fcﬁ;(lfg(g) this is markedly different
sented in Ref. 34. than the situation for K-Ar, for which we were left with
As discussed in Ref. 6, the radio frequency hyperfinevery large relative discrepanciésthis improvement is al-
transition measured by Waaijer and Réstepends mainly most certainly due to the fact that an estimate of the higher-
on the expectation value of the anisotropy strength functior@rdercg(g) /R'2 term generated from Eq9) was included
Vo o(R) [see Eq.(17)] for levels of H—Kr formed from in the potential function model used here.
ground stateortho-H,(v=0,j=1). This datum was also in-
cluded in the data set which determined the; Pbtential,
and that analysis reported a dimensionless discrepancy & Comparisons, testing, and predictions of the new
only 0.093, a value substantially smaller than the 3.84 showRetential
in Table VI. This difference between the present and  Figures 2—4 compare features of our recommended XC
previou$ predictions of this property for the same FBo-  (fit) potential with those of oua priori XC(0) surface and
tential energy surface reflects the improved accuracy of théne TT, potential of Ref. 6. In particular, Fig. 2 shows how
ISE procedure used in the present simulations relative to thghe positionR,, and depthe of the radial minimum varies
SEPT procedure used in Ref. 6. The results in the second rowith relative orientation when the $tretching coordinate is
of Table VI show that our Xdit) potential predicts this da- fixed at£=0. For all three surfaces the global minimum lies
tum almost within the estimated experimental uncertaintyat the collinear geometrg=0 (or ). The Xfit) and TT;
while the XQ0) potential does very much worse. The differ- surfaces have almost the same energy minima, with depths
ence between the quality of this agreement also correlatagiffering by only ~0.5% and minimum positions by only
with the degree of similarity of the two anisotropy strength ~0.2% —0.4%); for the priori XC(0) surface the analogous
functionsV, o(R) in the attractive regiotisee below. discrepancies are 6%—8% and 1%, respectively. The well
Figure 1 compares the inpab initio values ofCﬁ”(g) depth of thea priori XC(0) potential clearly changes dis-
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FIG. 3. Radial strength functiong, (R) andV, ;(R) of Eq. (17) for three
different H,—Kr potentials.
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FIG. 4. Radial strength functiong, ((R) andV, 4(R) of Eq. (17) for three
different H,—Kr potentials.
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FIG. 5. Interaction virial coefficients for J+Kr (in units cn® mol™) calcu-
lated from the Xfit) (solid curveg, XC(0) (dashed curve and TT; (dotted
curve) potentials, compared with experimental data from Ref. 36.

tinctly too little with 6, while its minimum position varies
too much. This is the same qualitative weakness found for
the XQ(0) potential of H—Ar,” but again, the empirical scal-
ing introduced by the§ function sufficed to yield a fully
satisfactory surface.

A more conventional way of comparing potentials in-
volves examining the radial strength functiow(g(R) de-
fined by the expansions of EQL7): for the three surfaces of
interest, the four leading terms of this expansion are com-
pared in Figs. 3 and 4. Figure 3 shows the basic isotropic
potentialsVy o(R) and the radial function¥, ;(R) defining
their linear stretching dependence, while Fig. 4 shows the
analogous functions defining the strength of ®gcos6)
anisotropy, V, o(R), and its linear stretching dependence
V, 1(R). In spite of the marked differences among the aniso-
tropy strength functions seen in Fig. 4, it is interesting to
note(see Fig. 3that the isotropic part of the X©) potential
and its linear¢ dependence are both quite similar to the
analogous components of the optimized (K@ surface. In
any case, it is clear that the basic isotropic potentigd(R)
is remarkably similar for all three potentials, but there are
significant differences among the other components. In con-
trast, the magnitude afd, for the XQ(0) potential(see Table
V1) reflects the substantial differences between its bésic
=0) anisotropy strength function in the well region and those
of the other potential¢see the lower segment of Fig).4

The lower segment of Table VI and Figs. 5 and 6 com-
pare the ability of the T3, XC(0), and X{fit) potential en-
ergy surfaces to predict values of two properties which were
not used in the determination of the Xif) potential, inter-
action virial coefficient®® and diffusion coefficientd’ For
both properties, the results shown were obtained from exact
quantum calculatior’é®® using the isotropic, rigid-diatom
version of the indicated potential, as obtained by
averaging over the diatom stretching coordinate for the

specified vibration-rotation level to giveV,;(R,6)
=(,j|V(R, 6,r)|v,j), and then projecting out the isotropic
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L L L L L L B L L TABLE VII. Predicted second interactive virial coefficiers,, diffusion
: __ _XC_:_(O)_] coefficientngz, and dimer formation equilibrium constaris (for standard
0.000 :{ _ _TI - - —F = :pr"*:ﬁ'_ + T state pressure of 1 b)acalculatgd using the X@t) potential of Table V
I 1 ﬁ_t Hi/ i assuming frozen “normal’” relative abundancesottho- and para-H, and
E T — I 4 D, and the average atomic mass for Kr.
o008 el XC(fit) - By, (cm®mol™) DY, (cnPs™Y) In (Kp)
D° . D° XC(fit) LS ]
o e _ T(K)  Hy—Kr D,—Kr  H,—Kr D,—Kr H,—Kr D,—Kr
Qootele—1 4L . T
BN B B e o e o B B 77  -109.367 -112.531 0.0561 0.0402 -3.522 -3.501
- & 90 -82.951 -85.057 0.0766 0.0548 -3.953 -3.920
oo XC(0) /] 100 -68.295 —69.911 0.0943 0.0675 -4.231 -4.199
C 8 ] 120 -47.632 -48.672 0.1346 0.0961 -4.730 -4.679
08 ‘ * ] 140 -33.824 -34.552 0.1806 0.1290 -5.143 -5.080
C , XC(fit) 160 -23.988 -24.529 0.2322 0.1658 -5.488 -5.426
C L ] 180 -16.654 -17.074 0.2889 0.2063 -5.791 -5.729
07 * . 200 -10.996 -11.332 0.3504 0.2503 -6.061 -5.999
D° [ \ ] 220 -6.511 -6.788 0.4166 0.2977 -6.305 -6.243
2T % T, 1 240 -2.881  -3.114 04873 03482 -6.527 -6.465
06~ ] 260 0.110 -0.090 0.5623 0.4019 -6.731 -6.669
C ] 280 2.609 2435 0.6415 04586 -6.919 -6.858
05 C b, ] 300 4.724 4571 0.7248 0.5182 -7.094 -7.033
5 E 320 6.532 6.396 0.8121 0.5808 -7.258 -7.197
C ] 340 8.092 7.969 09033 0.6461 -7.412 -7.351
04l H.- Kr ] 360 9.449 9.337 0.9984 0.7141 -7.557 -7.495
C 2 ] 380 10.636 10.534 1.0972 0.7849 -7.694 -7.632
C 400 11.683 11.588 1.1997 0.8583 -7.823 -7.762
03—l 420 12.609 12,521 1.3059 0.9344 -7.947 -7.885
T/ K 440 13.434 13.351 1.4156 1.0130 -8.064 -8.003
460 14.171 14.093 15290 1.0942 -8.176 -8.115
FIG. 6. Lower: Diffusion coefficients for in Kr (in units cnfs™) calcu- 480 14.832 14.759 1.6458 1.1779 -8.284 -8.223
lated from the Xfit) (solid curvg, XC(0) (dashed curve and TT; (dotted 500 15.428 15.358 1.7661 1.2640 -8.387 -8.326

curve potentials, compared with experimental data from Ref. 37. Upper:
Diffusion coefficients for H in Kr, as below, relative to values calculated
from the X{fit) potential.

ment of Table VI it is, perhaps, somewhat surprising that the

e — ] ] predictions yielded by the T;Ipotential are much worse than
component(R)=(Yo,dV, j(R, 6)[Yo 0. For the interaction  hose for the X@) potential. However, diffusion coeffi-
virial coefﬁments additional tests included performing fully gjents mainly depend on the isotropic average of the repul-
classical and semiclassic@le., classical plus first quantum gjye wall of the potential. The upper segment of Fig. 3 shows
correction calculatlong4 9 using the vibrationally averaged inat the TT, curve deviates from the X@t) potential in that
anisotropic potential¥, ;(R, §). While the predictions of the region much more than does the ¥ potential, and the
pure classical calculation were slightly different, the semi-direction and relative magnitude of those differences appear
classical calculation using the two-dimensional anisotropido be directly illustrated by the upper segment of Fig. 6.
potential yielded results essentially identical to those ob-Table VII presents values of the interaction virial coefficients
tained from the quantal calculation on the isotropic potentialand diffusion coefficients for bKr and D,—Kr systems
We therefore concluded that the latter provide a very accuealculated from our recommended ¥i€) potential energy
rate description of this property in the temperature rangesurface assuming “normali.e., corresponding to the high
considered. temperature equilibriuabundance obrtho- and para-H,

Since second virial coefficients are known to be mainlyor ortho- and para-D,. The results for the individuabrtho
dependent on the effective isotropic radial potential energynd para species differ very slightly because of the small
well, it is not surprising that the various calculated values ofdifferences in the associated vibrationally averaged poten-
dd,; seen in Table VI are all fairly similar. Thigexpectedl  tials VEﬁ(R) It is interesting to notésee Table V) that the
inability to distinguish among different potential surfaces isxc(0) potentlal which has no adjustable parameters, yields
one reason that those data were not included in the leasgiffusion and second virial coefficients which are almost in
squares analysis to determine ou—-HKr potential. full agreement with experiment.

In contrast with the interaction virial coefficients, the Finally, Table VIII lists the energies and tunneling pre-
diffusion coefficients show a very distinct preference for thedissociation widths(in square bracketsof all bound and
XC(fit) potential, a preference most clearly illustrated by thequasibound levels of complexes formed from ground-state
difference plot in the upper segment of Fig. 6. While it is para-H, and ortho-D,, as predicted from our recommended
gratifying to see the excellent level of agreement found forXC(fit) surface. Analogous results for complexes formed by
the XC(fit) potential, in view of the results in the upper seg- Kr with ortho-H, or para-D, are presented in the Journal’s
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TABLE VIII. Energies of levels of H(v,j)-8*r formed frqm groun.d state  model 113843454y hich proved to be sufficiently realistic

ortho- andparar_H2 caIct_JIated from _the rgcommended M0 potentlal_ en- and flexible that onIy five truIy independent empirical pa-
ergy surface, with predicted tunneling widths of metastable levels in square t ired in the | t fits t timi
brackets(all in cm?). rameters are required In e least-squares Tits 10 opumize

agreement with the experimental data; these aré-fheval-

E(,j,n,,1,))-Eq,]) ues listed in Table V. This contrasts with the eight param-
eters (plus additional intuitively justified constraintge-
n, 1=J H,(v=0, j=0) D,(v=0, j=0) quired to define the best previous potential for this system.
The realistic nature of the components of the basic XC
0 0 ~28.468 ~35.540 model ensures that this surface should extrapolate well into
1 -27.426 -34.976 . ; . .
" _25.350 _33.850 regions not directly sampled by the experimental data used in
3 _99258 _32.167 the determination of the potential energy surface. This is
4 -18.176 ~29.927 confirmed by the quality of its predictions of interaction
5 -13.145 -27.143 virial coefficients and diffusion coefficients, data which were
6 -7.225 -23.823 not used in the analysis. While the present potential has a
7 -0.510 -19.980 somewhat complex form, its availability as a documented
8 6.8030.031] -15.630 FORTRAN subroutine should facilitate its ug&’
9 14.440.79 -10.792 It is also noteworthy that within the average experimen-
10 ~5.494 tal uncertainties of 0.004 cih the 143 IR transitions for
E Zézgg:ggg (ng H,—Kr and 75 for Q—Kr are fL!IIy accounted for by the
13 12.6810.036 same thr_ee_-dlm_ensmnal.potentlal_ energy surface. In other
14 19.1§0.42] words, within this resolution the differences between the IR
spectra of these isotopomers are fully accounted for by ordi-
1 0 -1.653 ~8.085 nary vibrational averagin¢pver £) and mass considerations,
L -L171 ~7.693 so no Born—Oppenheimer breakdown effects are evident.
2 -0.278 ~6.914 The spectroscopic simulations required by the present
3 0.790.36] -5.759 ) L
4 4248 analysis used the ISE method, which is more accurate than
5 2406 the SEPT procedure used in previous work on this family of
6 ~0.288 systems. The extension of the ISE method described herein
7 1.9950.035 allowed the efficient calculation of exact derivatives of level
8 4.350.54] energies with respect to potential energy function param-

eters, an approach which is more accurate and much more
cost effective than the derivative-by-differences approach
online archive’® As one practical application of these results, used heretofore.
Table VII also lists values of the equilibrium constaits It is also appropriate to comment on the choice of the
for the formation of bimers between Kr ang Br D, in their ~ functional form used for the XC potential, as summarized by
normal (i.e., high temperature equilibriumortho and para Egs. (1)—(11), especially in regard to its diatom bond-
abundance stretching o dependence. As indicated by E7), the XC

— potential may be expressed as a finite power serigs kor

Hy+ Krs Ho = Kr (33 the homonuclear Kisotopomers, the& dependence of the
calculated using standard quantum statistical mechanigsotential may therefore be fully taken into account in quantal
expression&® The bound-state partition function used in close-coupling calculations by simply replacing® by
these calculations included all quasibound levels for whichappropriate expectation values and matrix elements
the tunneling lifetime is longer than the average time be<v’,j’|&{v”,j") for various hydrogen isotopomers, quantities
tween collisions at a total pressure of one bar. It is interestingvhich are readily availabf@ and/or readily calculate.
to note that in spite of the very different densities of states\While not essential, maintaining this simple linear depen-
these equilibrium constants are very similar for the two iso-dence on matrix elements of powers &€fs one reason for
topic species. Similarly, thkp values for complexes formed not allowing the scaling distanc®, [see Eq(4) and discus-
with ortho- and para-H, differed only by between 3% and sion below Eq(6)] to be a function of. For systems involv-
1% from the lowest to highest of the temperatures considing heteronuclear hydrogen isotopologuetd, HT, or DT)
ered, while forpara- andortho-D, the analogous differences the situation is somewhat more complicated, but the treat-
ranged from 0.05% to 0.006%. ment is still a fairly straightforward procedure. Some details
regarding how this is done are included in the comments
about our potential function subroutine presented in the Ap-
pendix, while more details may be found in Ref. 97.

This paper describes the determination of a reliable The fact that the angle dependence of the potential is
three-dimensional potential energy surface for the-Kr  built into the Heitler—London exponent and damping func-
system, which represents the new high resolution IR data faiion scaling distanc&k;=R.,(68,£=0) means that expanding
the H, and D, isotopomers within the experimental uncer- the Vi(R, 6) functions in terms of the familia¥, \(R) func-
tainties. This potential surface is based on the XC potentiaiions of Eq.(17) requires the use of numerical quadrature

VI. SUMMARY AND CONCLUSIONS
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techniques® However, this is true for most other sophisti- Dynamical calculations require the potential energy or
cated potential forms and imposes no significant difficultiesradial channel potential functions to be defined in terms of
Note that the two-dimensional vibrationally averaged potenthe center-of-mass Jacobi coordinatés ,, 6. ), and for
tial for ground-state Kis not simply the leading term in the heteronuclear hydrogen they differ significantly from the
first expansion in Eq17), Vo(R, 6), since expectation values “bond-midpoint coordinates{Ryq, Omig) in terms of which
of higher powers of are not zero for H (v=0,j=0). our XC(fit) potential is defined. For a classical calculation
In conclusion, therefore, we believe that the most pro-which simply requires values of the potential energy at each
ductive means of developing realistic and flexible multidi- instantaneous system configuratitR. ., 6. m.&) this pre-
mensional potential energy surface models for van der Waalsents little difficulty, since for any such system configuration
interactions is the type of approach used here. The compdhe associated bond-midpoint coordinate values may readily
nent Heitler—London and Coulomb interaction energies arée generated from the expressi%s
relatively easy to calculate, and even without adjustment _ 21/2
give a r)éason)élble approximation to the final optimi]zed iso.  Rmia= Rem[1+ 2(0/R ;n)COS b m.+ (/R m)°] 2, (A3)
tropic surface. The fact that they build in very realistic de-
scr?ptions of the shapes of and ir?teractions be)t/ween the com-  C0Smia = (Rem.COSbe.m. + 8)/Rmia (A4)
ponent species also means that relatively few empiricain which the distance from the diatom center-of-mass to the
parameters are required to refine such models to yield stat&ond-midpoint is
of-the-art potentials. B M, - M|

APPENDIX: POTENTIAL FUNCTION SUBROUTINE - 2(My+My)
XCfitH2Kr

ro(é+1) (AS5)

and M; and M, are the masses of the atoms forming the
Dynamical calculations for an atom-diatom system arehydrogen diatom. If its input parameters indicate tivt

generally either classical, simply requiring values of the po-# M,, subroutine XCfitH2Kr uses Eq$A3)—(A5) to gener-
tential energy function itself for a particular system configu-ate the corresponding bond-midpoint coordinate values, and
ration, or quantum-mechanical coupled-channel calculationthe potential function value is then generated from &d.)
which require diagonal and off-diagonal radial channel po-in the usual manner.
tential functions associated with various combinations of exit ~ For quantum coupled-channel calculations involving
channel diatom vibration-rotational levels. Consideration otheteronuclear hydrogen the situation is somewhat more
the polynomial orders associated with the parametrization ofomplicated"*®% since the coordinate transformation of
Tables | and V shows that for our Xfit) potential for Eqgs. (A3)—(A5) must be appliedbefore any diatom vibra-

H,—Kr [see Eq(17)] Kmax=5: tional averaging is done. However, Ref. 98 showed that the
5 introduction of an orthogonal polynomial representation for

V(R 6,8 =2, &Vi(R, 0). (A1) the g_(jependence of the potentigl energy fun_ction greatly

k=0 simplifies the problem of generating the vibrationally aver-

. . . ged functions required for such cases. For any particular
The radial channel potentials required by cou Ied—channejl . X
calculation$®® may bg generated rZadin frgm thepexpression. ystem geometry, the value of the potential energy function

is of course the same, no matter which coordinate system is
- ° L used. As a result, with the center-of-mass and bond-midpoint
Vot (RO) =", j' V(R 6,8v,i)= %@W,j" Vi(R, 0) coordinates related by Eq§A3)—(A5), we can write
A2 kr,nax
) ] o ] ) ( ] ) U(Re.ms Oe.ms & = V(Rmids Omia ) = 2 gkuk(Rc.m.a Oc.m)
in which the requisite diagonal and off-diagonal matrix ele- k=0
ments of powers of the diatom stretching coordinate (AB)

<§k>’v’fj'jrz(v’,j’|§k|v,j> may be generated readily from the o _ _
accurately known potential functions for all isotopologues of " which Kz, kme=5, and values of the expansion func-

ground-state molecular hydrog@% using standard UONSUYk(Rem. fom) are detersr?néineq from an orthogonal poly-
method$” To facilitate this type of application, our X€) nomlgl quadrature procedq This allows radial channgl
potential energy subroutine XCfitH2Kr offers the option of functions for heteronuclear isotopologs to be generated in the
either having the subroutine return the value of the potentir:ﬂ;ame manner as for homonuclear hydrogen
energy fun'ction itself f(?r a particule}r,syste.m configura'tion Ui,,j’j’(Rc.m.a Oem) = (0" ,j"URe s Oorms Ol
(R, 6,8 or, if an appropriate set Gigk)‘;]j'J matrix elements is ,
supplied, returning values of the vibrationally averaged ra- Kmax o i
dial channel functions of Eq.(A2).70’91 However, this = E <§k>v,i'J Ui(Rems Oc.m) - (A7)

. . . k=0
straightforward approach would only be valid for interac-
tions involving the homonuclear isotopologs of diatomic hy- ~ Numerical tests show that across the domgin[-0.9,
drogen for which the diatom center of mass is located at the-0.9], which extends far beyond the region for which our
bond midpoint about which our X@t) potential is ex- XC(fit) surface is expected to be reliable, figf,,=8 this
panded. approach yields transformed potential function values for
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