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An improved three-dimensional potential energy surface for the H2–Kr system is determined from
a direct fit of new infrared spectroscopic data for H2–Kr and D2–Kr to a potential energy function
form based on the exchange-Coulomb model for the intermolecular interaction energy. These fits
require repetitive, highly accurate simulations of the observed spectra, and both the strength of the
potential energy anisotropy and the accuracy of the new data make the “secular equation
perturbation theory” method used in previous analyses of H2–srare gasd spectra inadequate for the
present work. To address this problem, an extended version of the “iterative secular equation”
method was developed which implements direct Hellmann–Feynman theorem calculation of the
partial derivatives of eigenvalues with respect to parameters of the Hamiltonian which are required
for the fits. ©2005 American Institute of Physics. fDOI: 10.1063/1.1850462g

I. INTRODUCTION

For over a quarter century molecular hydrogen–hrare
gasj sH2–Rgd van der Waals molecules have been leading
prototype systems with regard to the determination of accu-
rate multidimensional potential energy surfaces from experi-
mental data.1–7 Very high quality potentials have also been
determined for more strongly bound and/or more rigid sys-
tems such as Ar–HF,8 Ar–HCl,9 He–CO,10–13 Ar–CO2,

14

Ne–HF,15 sHFd2,
16 and sHCld2.

17 The detail and accuracy of
these surfaces have helped stimulate the development of bet-
ter theoretical methods for theab initio calculation of van
der Waals interactions, which in most favorable cases are
now beginning to approach spectroscopic accuracy in the
potential well region.18–20 In the H2–Rg family, most atten-
tion to date has been focused on the H2–Ar system for which
the widest range of spectroscopic,7,21–24collisional,25–28 and
bulk property data29–33 are available. However, the heavier
H2–Kr and H2–Xe species are also interesting for a number
of reasons.sid The presence of larger numbers of electrons
make them more challenging test systems forab initio meth-
ods of calculating van der Waals interactions.sii d Their stron-
ger isotropic and anisotropic interactions make accurate
quantal calculation of vibration-rotation eigenvalues of these
systems distinctly more challenging than for H2–Ar, a fact
which stimulated our development of a better method for
performing such calculations.siii d Since the hydrogen–hrare
gasj complexes are the only atom-diatom species for which
the dependence of the potential energy on diatom bond
length has been quantitatively determined from experi-

ment,1–7 having the best possible three-dimensional surfaces
for the whole family of systems should prove useful in un-
derstanding trends in such behavior and allowing quantita-
tive tests of models for vibrational inelasticity.

The first reported three-dimensional potential energy sur-
face for H2–Kr was obtained1 from an empirical fit to the
1971 infraredsIRd data of McKellar and Welsh.21 While re-
markable for its time, the resolution of those measurements
was substantially lower than that of data available today.34

Moreover, that surface was defined using simple empirical
Lennard–Joness12,6d functions for the radial behavior of the
various components of the potential.1 Subsequent reanalyses
of those same data used increasingly sophisticated potential
function models which incorporated both the correct theo-
retically known long-range behavior3 and a “collapsed-
diatom limit” constraint which allowed a more realistic over-
all diatom-stretching dependence to be determined.5,35

However, the fact that the quality of agreement with experi-
ment obtained using these three different models for the po-
tential was essentially the same illustrates the fact that the
available data21 were not particularly sensitive to the radial
shape of the potential energy surface. This conclusion was
not surprising, since the zero-point energy of H2–Kr is ap-
proximately half of the well depth and the observed transi-
tions only involve rotational sublevels of the lowest vibra-
tional stretching level of the van der Waals bond. This
observation underlines the importance of using a physically
realistic model for the potential surface when fitting to ex-
perimental data of this type.

The best previous potential energy surface for H2–Kr is
the semiempiricalssome parameters being fixed from theoryd
“TT3” function of Ref. 6. It was determined from a fit to a
combination of the somewhat more accuratesestimated
uncertainties23 <0.02 vs 0.03 cm−1 for the data of Ref. 21d
IR H2–Kr data of Ref. 23 and the lower resolution D2–Kr
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IR data from Ref. 21 plus the one reported hyperfine transi-
tion energy.22 This TT3 model for the potential energy func-
tion is quite similar to the “BC3s6,8d” model of Ref. 35sas
reported in Ref. 5d, but utilizes a more sophisticated repre-
sentation of the long-range part of the potential. While quali-
tatively quite similar to previous potential energy surfaces
for this system, the fact that the TT3 surface accurately re-
produces the hyperfine datum,22 for which the earlier sur-
faces gave very poor predictions,6 indicated that its potential
anisotropy for complexes formed with ground statesv=0d
H2 was substantially better than that of the earlier surfaces.
Moreover, that analysis was the first to discern a measurable
contribution of theP4scosud potential anisotropy for any of
the H2–Rg systems.

McKellar has now obtained a new body of infrared and
far-infrared data for H2–Kr and D2–Kr which is more ex-
tensive and substantially more accuratesestimated uncertain-
ties ±0.004 cm−1d than the data available previously.34 The
main objective of the present work is to utilize these exten-
sive new high resolution IR data and the hyperfine datum of
Waaijer and Reuss22 to determine the best possible three-
dimensional potential energy surface for this system. The
substantially greater accuracy and extent of these new IR
data34 means that the resulting potential surface should be
more precise and reliable that those reported heretofore.1,3,5,6

Experimental second virial36 and diffusion37 coefficients are
used to provide an independent assessment of the quality of
the new potential energy surface.

To date, no fullab initio potential energy surfaces have
been reported for H2–Kr. This is not surprising since the
large numbers of electrons involved would challenge even
the best “supermolecule”-type electronic structure programs
of today. However, for interactions between closed-shell spe-
cies remarkably successful methods have been developed
which are based on a partitioning of the interaction energy
into a number of components which can be estimated fairly
accurately at relatively low levels of computational
effort.7,11,38–58A potential function of this type is the basis of
the present analysis.

A least-squares fitting scheme for refining a trial poten-
tial energy surface typically requires many iterative cycles,
in each of which the entire spectrum must be computed to
“spectroscopic accuracy” and accurate partial derivatives of
each datum with respect to each fitting parameter must be
determined. Our latest study of the H2–Ar system7 and pre-
vious analyses6 for H2–Ar, H2–Kr, and H2–Xe achieved
excellent results using the “secular equation/perturbation
theory” sSEPTd method of Ref. 59. However, the distinctly
stronger potential anisotropy of the H2–Kr system scom-
pared to H2–Ard gives rise to substantially stronger inter-
channel coupling, and due to the accuracy of the new IR
data,34 the SEPT method is no longer adequate. The present
work therefore uses the “iterative secular equation”sISEd
method of Ref. 60, which is essentially exact and has been
used in a study of He–C2H2 and in the determination of
accurate potential energy surfaces from spectroscopic data
for He–CO.10,11,61However, the ISE method has never pre-
viously been used to simulate hyperfine transitions, and in
the He–CO work,10,11 the partial derivatives of level energies

with respect to potential function parameters required by the
least-squares procedure were determined by differences, a
relatively tedious procedure. Two other aspects of the present
work involve extending the ISE method to allow it both to
generate analytic partial derivatives and to simulate the type
of hyperfine transition observed by Waaijer and Reuss.22

In the following, the three-dimensional “exchange-
Coulomb” sXCd potential energy model used herein, and the
manner by which it can be modified or “morphed” by the fits
to experimental data are described in Sec. II. Our enhanced
version of the ISE method for calculating eigenvalues and
eigenfunctions for vibration-rotation levels of atom-molecule
complexes is described in Sec. III. The experimental data
used and some aspects of the fitting procedure are then de-
scribed in Sec. IV, and the resulting optimized XC potential
energy surface for H2–Kr is presented and compared with
the best potential from the literature in Sec. V. Our conclu-
sions are then summarized in Sec. VI, while the Appendix
describes issues encountered in using the resulting recom-
mended potential for practical calculations.

II. MODEL POTENTIAL USED FOR H 2–Kr

The earliest work in this field used either purely empiri-
cal model potential energy functions1 or potential forms in-
corporating fixed, theoretically known anisotropic dispersion
energy coefficients.2–5,8–10 However, it would be virtually
impossible to determine purely empirically a sufficiently
large number of parameters to characterize fully the detailed
shapes of the potential surfaces for systems with even mod-
erately strongly anisotropic interactions. At the same time, in
spite of remarkable advances inab initio methods for de-
scribing weak interactions, for all but the simplest systems
they are still unable to provide a fully satisfactory description
of such interactions. On the other hand,ab initio or appro-
priately chosen model potential energy surfaces of even
moderate quality should incorporate most qualitative features
of the shape of the true surface. Thus, an increasingly com-
mon approach has been to start with a realistic theoretical
potential energy function, and then to globally modify or
morph it to optimize the agreement with experimental data,
with the implicit assumption that the sound physics incorpo-
rated into the initial surface will make the refined potential
quantitatively reliable in regions to which the data used in
the analysis are not particularly sensitive. This is the ap-
proach used here.

A. Exchange-Coulomb potential for H 2–Kr

For interactions involving closed-shell species, a number
of approaches have been suggested for constructing potential
energy surfaces as a sum ofsmainlyd attractive andsmainlyd
repulsive components, each of which is obtained from a rela-
tively inexpensive calculation.7,11,38–58 These models can
represent most important features of the interaction quite re-
alistically, including effects due to the internal bond-length
dependence of the component monomers. They typically
model the main attractive part of the interaction energy using
the best available long-range multipolar interaction energies,
corrected for the neglect of charge overlap effects62 through
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the use of multiplicative damping and corrector functions.
While other approaches use supermolecule self-consistent
field sSCFd dimer interaction energies to represent the
smostlyd repulsive part of the interaction energy, the
exchange-Coulomb or XC model7,11,45–47 used herein em-
ploys the Heitler–London interaction energysthe sum of the
first-order Coulomb and exchange energiesd for this purpose.
Since it only requires the SCF wave functions for the inter-
acting monomers, the XC model is, in principle, quite easy to
apply.

The present work uses the Jacobi coordinatesr =r r̂ , R
=RR̂, andu, wherer is a vector of lengthr joining the atoms
in the diatom,R a vector of lengthR running from the mid-

point of the diatom bond to the Kr atom,r̂ and R̂ are unit

vectors, andu;cos−1sr̂ ·R̂d. In practice, the diatom bond
length r is replaced by the dimensionless stretching coordi-
nate j;sr −r0d / r0, where the fixed reference distancer0

=1.448 739a0 is the expectation value ofr for H2 in its
ground rovibrational level.63 As in our study of H2–Ar,7 the
XC potential is then written as

VsR,u,jd = FEHL
s1d sR,u,jd + DECsR,u,jd

= FEHL
s1d sR,u,jd − G12sR,ud

3 o
n=6s2d

12

fnsR,udCnsu,jd/Rn s1d

with the long-range interaction coefficients being expanded
as

Cnsu,jd = o
l=0s2d

n−4

Cn
sldsjdPlscosud, s2d

in which Plscosud is the usual Legendre polynomial of order
l. Here, EHL

s1d is the first-order Heitler–London interaction
energy, and the main attractive part of the potential,DEC, is
an individually damped, overall-corrected, dispersion plus
induction energy series representing the second- and higher-
order Coulomb interaction energy. The individual damping
functions fn take account of non-negligible charge overlap
effects on the individualR−n multipolar contributions to the
second-order Coulomb interaction energy and prevent these
inverse-power terms from diverging at smallR.64,65The am-
plifying “corrector” functionG12 corrects for the omission of
additional higher-order inverse-power terms from the poten-
tial model, as discussed below.40,43,51Finally, the quantityF
is an empirical scaling factor to be determined from a fit to
experimental data, as discussed in Sec. II B.

Values of the Heitler–London interaction energyEHL
s1d for

H2–Kr were calculated using a version of theCADPAC

program66 which incorporates the Hayes–Stone perturbation
theory program.67 The calculations are analogous to those
reported earlier for a fixed H2 bond length ofr =1.4a0,

68 and
are based on high quality SCF wave functions for the iso-
lated monomers.69 Heitler–London energies were obtained at
six equally spaced values ofR s3a0øRø8a0d, four values
of u, and five H2 bond lengthss1.1a0ø r ø1.9a0d.70 These
120 computed energies were fitted to the form

EHL
s1d sR,u,jd = Ke−sR−Rsdsb0+b1z+b2z2d

3 o
k=0

3

o
p=0

3

o
l=0s2d

6

apk
sldjkzpPlscosud, s3d

in which z;sR−Rsd / sR+Rsd, a00
s0d=1, and Rs=Rssud is a

fixed reference distance functionssee belowd. In this least-
squares fit, the weight associated with eachEHL

s1d sR,u ,jd da-
tum was the inverse square of an uncertainty defined as 0.1%
of its value. The individualapk

sld coefficients defining this
function have no particular physical significance, so the fact
that a number of them are not statistically significant and are
rounded to zerossee Table Id is of no concern.

Aside from the restriction to even Legendre angular
functions, reflecting the homonuclear symmetry of H2, and
the fact that it dies off exponentially at largeR, the algebraic
form of Eq. s3d has no particular physical significance other
than that it should give a good representationsrelative to the
chosen 0.1% relative uncertaintiesd of the 120 ab initio
Heitler–London energies. However, we chose to define the
sin principle, arbitraryd reference distanceRs=Rssud as the
positionRmsu ,j=0d of the sangle-dependentd radial potential
minimum for the monomer stretching coordinate fixed atj
=0. In practice, an initial representation ofEHL

s1d is obtained
using some preliminary constantRs value, and the resulting
EHL

s1d function is then combined withDEC to yield an overall
potential from which the actualRmsu ,j=0d values may be
determined. The latter are then fitted to the angular expan-
sion

Rssud = Rmsu,j = 0d = o
l=0s2d

6

Rm
sldPlscosud. s4d

Repeating the fit to theEHL
s1d data withRs defined by itera-

tively refined versions of Eq.s4d yields rapid convergence to

TABLE I. Dimensionless parametersap,k
sld defining our fit of Eq.s3d to our

calculated Heitler–London energies for H2–Kr. Other parameters involved
in the fit are K=s316.880 673 582 54310−6dEh, b0=1.816 53a0

−1, b1

=0.3199a0
−1, b2=0.141a0

−1, and the expansion coefficients of Eq.s4d: Rm
s0d

=7.049 387 8a0, Rm
s2d=0.025 668 5a0, Rm

s4d=−0.001 307 3a0, and Rm
s6d=

−0.000 578 9a0.

p k l=0 l=2 l=4 l=6

0 0 1.0 0.1814 0.0095 0.0014
1 0 0.0 −0.0742 −0.0137 0.0
2 0 0.0 0.296 −0.019 −0.021
3 0 0.0 0.0 −0.23 −0.08
0 1 1.3029 0.657 0.0459 0.005
1 1 3.145 0.432 −0.011 0.0
2 1 1.83 0.95 0.0 −0.12
3 1 0.0 0.0 −0.98 −0.5
0 2 0.632 0.832 0.107 0.01
1 2 4.0 2.01 0.09 0.0
2 2 7.9 2.4 0.0 0.2
3 2 5.4 0.0 −1.9 0.0
0 3 0.03 0.47 0.12 0.0
1 3 1.29 2.1 0.0 0.0
2 3 6.7 3.0 0.0 0.0
3 3 9.0 0.0 0.0 0.0
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the desired self-consistent form. This approach yields a very
precise representation of theab initio EHL

s1d values with dis-
crepancies which are on average only 0.58 times the assigned
s0.1%d uncertainties. The resulting constantsK, bi, apk

sld, and
Rm

sld defining thisEHL
s1d function are listed in Table I. Note that

our particular definition ofRs affects our analytic represen-
tation of EHL

s1d , but does not significantly affect the shape of
the resulting analytic function.

The multipolar representation used forDEC fsee Eq.s1dg
is based on the best available values of the dispersion and
induction coefficientsCnsu ,jd,71,72and on the fixed damping
and corrector functions

fnsR,ud = f1 − e−AnsSRd−BnsSRd2−DnsSRd3gn, s5d

G12sR,ud = 1 + 27.79e−0.6850sSRd−0.029 98sSRd2, s6d

in which S is a system-dependent scaling factor. Following a
widely used approach,38–40,43,51these functions are defined
by scaling the radial coordinate of the analogous functions
determined for the nonbonded H2s3Su

+d interaction, which are
known essentially exactly.65,73,74 In particular, the constants
An, Bn, andDn are those determined for the H2s3Su

+d interac-
tion swhich corresponds toS;1d;65 they are listed in Table
II. As in previous work,7,11,38–50the scaling factorS used to
map the functions derived for H2s3Su

+d onto the range of the
H2–Kr potential is defined asS=Rm

H2/Rmsu ,j=0d, where
Rm

H2=7.82a0 is the position of the H2s3Su
+d potential mini-

mum. As outlined above, the values ofRmsu ,j=0d, and
hence ofS=Ssud, are determined iteratively once the rest of
the potential is specified. WhileRmsud sand henceSd could
also be expressed as a function ofj, that would complicate
the potential model, and since the effect ofj on the potential
energy surface in the region of interest is relatively modest,

that j dependence is absorbed into other parts of the model.
Note that in contrast to the situation for the representation of
EHL

s1d , where the values ofRmsu ,j=0d affect the representation
of the interaction but not its values, the fact thatRs

=Rmsu ,j=0d characterizes the onset of the damping of the
multipole expressions for the various dispersion energy
terms means that itdoes affect the magnitude of the
DECsR,u ,jd contributions to the overall XC potential func-
tion.

Anisotropic dispersion and induction coefficients
Cn

sldsjd for H2–Kr and other H2–Rg interactions have been
reported by Wormer, Hettema, and Thakkar,71 the dispersion
coefficients being calculated from dynamic multipole polar-
izabilities while the induction coefficients were generated
from the multipole moments of H2 and the static polarizabil-
ities of the atoms. Vibrationally averaging theseab initio
results forC6 for the ground vibration-rotation state of H2

yielded C̄6
s0d and C̄6

s2d values which were, respectively, some
2.58% and 5.04% higher than the accurate values determined
by constrained dipole oscillator strengthsDOSDd
techniques.72 The “theoretical” C6

s0dsjd and C6
s2dsjd values

used here were therefore obtained by scaling theab initio
results of Ref. 71 to reproduce the DOSD values. The result-
ing set of long-range coefficientsCn

sldsjd are listed in Table
III, together with estimates of their uncertainties; forn.6
these values contain both dispersion and induction contribu-
tions. Note that in Eq.s1d we have assumed that the induc-
tion energy damping functions are the same as those for the
corresponding dispersion terms. This cannot be justified
theoretically, but little is known about the damping of induc-
tion energies for interactions involving molecules, and since
the attractive part of the H2–Kr interaction is dominated by
the dispersion energy, error due to this approximate treat-
ment of the induction damping has little effect.

In our analytic representation ofDECsR,u ,jd, the theo-
retical long-range potential coefficients are expanded as

Cn
sldsjd = o

k=0

kmax
sn,ld

Cn
l,kjk. s7d

The fact that the H2–Kr potential energy surface must col-
lapse to the one-dimensional He–Kr potential curve asj→

TABLE II. Values of thehAnj, hBnj, and hDnj constants characterizing the
damping functionsfnsR,ud of Eq. s5d, in atomic unitssfrom Ref. 65d.

n=6 n=8 n=10 n=12

An 0.364 8 0.307 3 0.251 4 0.219 7
Bn 0.033 60 0.024 69 0.023 79 0.019 64
Dn 0.001 651 0.001 227 0.000 566 4 0.000 416 8

TABLE III. Ab initio values of composite dispersion and induction coefficientsCn
sldsjd for H2–Kr, in atomic unitssRef. 71d. The values ofC6

s0d andC6
s2d were

scaled to reproduce the accurately known values obtained from dipole oscillator strength distributionsRef. 72, see textd, while ther =0 valuessfor He–Krd are
based on those of Ref. 76, but withC6

s0d scaled to take account of reliable DOSD resultssRef. 75d. Values ofC12
s0d were defined by Eq.s9d with uncertainties

taken as ±55% forr .0 and ±100% forr =0.

r /a0 j C6
s0d C6

s2d C8
s0d C8

s2d C8
s4d C10

s0d C10
s2d C10

s4d C10
s6d

0.0 −1.000 13.258 0.0 254.5 0.0 0.0 6 650.0 0.0 0.0 0.0
1.0 −0.310 28.947 1.6793 679.61 74.619 2.2671 19 345.0 2 350.2 68.618 12.068
1.2 −0.172 33.498 2.5322 809.43 124.53 5.119 23 625.0 4 129.6 202.31 23.895
1.4 −0.034 38.239 3.5537 951.61 194.49 9.6448 28 467.0 6 733.9 402.78 36.897
1.449 0.000 39.416 3.8288 988.1 215.06 11.029 29 731.0 7 515.8 464.78 40.453
1.65 0.139 44.264 5.0403 1143.5 315.18 18.136 35 215.0 11 396.0 803.44 58.548
2.0 0.381 52.462 7.3341 1430.3 557.59 36.379 45 792.0 21 259.0 1909.5 120.25
3.0 1.071 68.14 11.7626 2227.1 1804.4 120.21 80 049.0 80 925.0 13329.0 721.65

Uncertaintysr .0d sr .0d ±1% ±1% ±5% ±13% ±20% ±13% ±25% ±42% ±67%
Uncertainty sr =0d ±5% ±15% ±30%
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−1 sr →0d means thatCn
sldsj=−1d=0 whenl.0.4 This con-

dition is used to define the value of the highest-order expan-
sion coefficient for each combination ofn andl in terms of
the others,

Cn
l,kmax

sn,ld
= s− 1dkmax

sn,ld−1 o
k=0

kmax
sn,ld−1

s− 1dkCn
l,k, forl . 0. s8d

For l=0, however, this collapsed-diatom limit constraint
was imposed by including the known values of the
CnsHe–Krd coefficients75,76 for n=6, 8, and 10 asCn

sldsj
=−1d data in the fit to Eq.s7d.

In our analogous study of H2–Ar, the inverse-power ex-
pansion comprising the last term in Eq.s1d was truncated at
the term varying asR−10, and it was found that the potential
could not adequately represent the experimental data unless
that last term was scaled to be far stronger than was sug-
gested by the theoreticalC10

s0dsjd values.7 This suggests that
the fit to determine that potential was sensitive to the neglect
of R−n contributions forn.10. The present work therefore
included an isotropicn=12 term in the inverse-power expan-
sion of Eq.s1d, but since no theoretical estimates are avail-
able, its values were approximated using a recursion relation
suggested by Tang and Toennies:55

C12
s0dsjd = C6

s0dsjdfC10
s0dsjd/Cg

s0dsjdg3. s9d

The corrector functionG12 was determined77 in the same
manner as was theG10 function used in the earlier version of
the XC potential energy model38,40,43in which the long-range
dispersion energy expansion was truncated at theR−10 term.
In particular, with thefnsR,ud functions defined by Eq.s5d,
the parameters definingG12 were determined by fitting the
accurately known values ofDECsRd for the H2s3Su

+d interac-
tion to the expression −G12sRdon=6s2d

12 fnsRdCn/Rn.
Our preliminary ora priori version of the XC potential

for H2–Kr, identified herein as the “XCs0d” surface, is given
by Eqs. s1d–s9d with F=1, EHL

s1d defined by the fit of the
calculated energies to Eq.s3d yielding the coefficients listed
in Table I, and the expansion coefficientsCn

l,k of Eq. s7d
determined purely from fits to the theoretical values listed in
Table III. While realistic, this three-dimensional potential is
not expected to be quantitatively accurate. The rest of this
work is concerned with using a fit to experimental data to
determine the optimized “XCsfitd” potential for this system.

B. Fitting a XC model potential to experimental
data

Part of the success of the XC potential function model in
yielding reliable srare gasd–srare gasd and srare gasd–
molecule potentials7,11,41–47has been due to recognition of
the fact that since theoretical inverse-power long-range po-
tential coefficients are usually not exact, fits to experimental
data should allow those coefficients to vary within their es-
timated uncertainties.78,79 In contrast, in most previous mod-
eling of multidimensional van der Waals potential energy
surfaces, the long-range potential energy coefficients were
held fixed at the best estimates yielded by theory. That ap-
proach overlooks the uncertainties in those calculated values,

uncertainties which tend to increase rapidly withn and l,
and it introduces an unnecessary and inappropriate degree of
rigidity into a potential model.

Following Refs. 11 and 7, the present work treats the
theoreticalCn

sldsjd values of Table III as “ab initio data” and
simply includes them with the spectroscopic line positions in
the least-squares fit analysis. This in turn makes theCn

l,k

coefficients of Eq.s7d free parameters in the fit. While this
might appear to introduce an excessive number of empirical
parameters, in practice their values are mainly determined by
the ab initio Cn

sldsjd “data,” and for the most part are only
modestly affected by the spectroscopic data. Moreover, be-
cause those data are not particularly sensitive to theirj de-
pendence, the anisotropic dispersion coefficientssthose for
l.0d were were fitted as groups represented by the expres-
sions

Cn
sldsjd = Qn

sld o
k=0

kmax
sn,ld

Cn,th
l,k jk, s10d

in which the coefficientsCn,th
l,k sin which th denotes “theory”d

are fixed values determined purely from independent fits to
the theoreticalCn

sldsjd values of Table III to Eq.s7d, and only
the group scaling parametersQn

sld were allowed to vary in the
global analysis.

Treating theCn
l,k for Qnsldg parameters as variables cer-

tainly provides a degree of flexibility in XC potential energy
surface. However, the main means of modifying thea priori
XCs0d surface to optimize the agreement with experimental
data is through the factorF which scales the mainly repul-
sive Heitler–London part of the interaction energy. It is ex-
pected to be a weak function ofR, u, and j.7,11,45–47How-
ever, in the present work it proved adequate to represent it as
a function ofu andj only:

F = Fsu,jd = o
l=0s2d

lmax
sFd

o
k=0

kmax
sFd

Fl,kj
kPlscosud. s11d

More sophisticated parametrizations ofF were also exam-
ined, but the resulting marginal improvement in the quality
of fit to the experimental data did not justify the increased
complexity.

In summary, the free parameters varied in the fit to the
XC model potential for H2–Kr are theFl,k expansion param-
eters of Eq.s11d, plus the individualCn

l,k expansion coeffi-
cients for some combinations ofl and n, and the group
scaling parametersQn

sld for others. Thea priori initial trial
XCs0d surface, which hasno empirical parameters, is ob-
tained by settingF0,0=1 and all otherFl,k=0, fixing all
Qn

sld=1 and setting allCn
l,k coefficients at the valuesCn,th

l,k

obtained from fits to the sets ofab initio Cn
sldsjd values.

III. COMPUTATIONAL METHODS

The previous generation21,23 of infrared data for H2–Kr
sthose used to determine the potential function of Ref. 6d had
line position uncertainties of&0.02 cm−1, and the SEPT pro-
cedure of Ref. 59 yielded a more than adequate level of
accuracy for the requisite calculations. However, the new
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data of Ref. 34 are substantially improved, with typical esti-
mated uncertainties of ±0.004 cm−1 and the SEPT method
proved to be no longer adequate. In particular, for a realistic
trial H2–Kr potential, comparisons with results generated us-
ing Hutson’s sessentially exactd BOUND program80 showed
that for truly bound states the SEPT method could yield ei-
genvalue predictions with errors of up to 0.008 cm−1, ap-
proximately twice the uncertainty of the new line positions.34

On the other hand, whileBOUND gives quite reliable eigen-
values, it does not take account of the shifting and broaden-
ing of metastable levels and cannot readily yield the wave
functions required for direct calculation of the partial deriva-
tives with respect to potential parameters needed for a least-
squares fitting procedure. Thus, a better method was re-
quired.

The method for calculating the transition frequencies
sand predissociation linewidthsd used herein is the fully re-
contracted version of the ISE method of Slee and Le Roy.60

As is BOUND, this method is alsosin principled exact for truly
bound states, and ISE eigenvalues calculated for H2–Kr
agreed with those generated fromBOUND to within
10−5 cm−1 for all truly bound states of H2–Kr. The ISE
method is also very efficient, with a computational effort
which grows relatively slowly with the number of coupled
channels, and since it gives wave functions naturally, it may
readily be adapted to calculate spectroscopic intensities or to
apply a Hellman–Feynman theorem procedure to calculate
the partial derivatives required by the fitting procedure.
Moreover, its structure very naturally incorporates a pertur-
bative treatment of the coupling to open and to distant closed
channels.

A. Calculating derivatives with respect to potential
energy function parameters within the ISE
method

In each cycle of a nonlinear least-squares fitting proce-
dure, values of the partial derivatives of the calculated value
of each observable with respect to each parameter of the
model are required. In our previous applications of the ISE
and SEPT methods,6,7,10,11the partial derivatives of the ob-
served transition energies with respect to the potential energy
function parameters were calculated numerically from sym-
metric first differences. However, the computational cost of
that approach is high, since for each cycle of a fit to a po-
tential energy model withNp fitting parameters the whole
simulation must be performed some 2Np+1 times. In the
present work we therefore implemented the Hellman–
Feynman theorem for calculating the partial derivatives of
the eigenvalues directly.

For an atom-diatom van der Waals molecule, the Hamil-
tonian governing the nuclear motion may be written as

H̃0sR,r d = −
"2

2md
¹2 −

"2

2mda
¹R

2 + VsR,u,jd, s12d

in which md is the normal reduced mass of the component
diatom andmda the analogous reduced mass for the diatom-
atom pair. The Hellman–Feynman theorem tells us that for a
particular eigenvalueEa of this Hamiltonian, the partial de-

rivative with respect topi, one of the parameters defining the
potential energy functionVsR,u ,jd is

]Ea

]pi
=KCaU ]VsR,u,jd

]pi
UCaL , s13d

whereCa=Casr ,Rd is the eigenfunction ofH̃0 correspond-
ing to eigenvalueEa. In a coupled-channel method the eigen-

functions ofH̃0 may be expanded as

Casr ,Rd = o
a

xa
asRdFa

JMJsr ,R̂d, s14d

wherea is the state label andFa
JMJsr ,R̂d is the basis function

characterizing a particular channela. In the space-fixed co-
ordinate system used here,a=hv , j ,nv , l ,J,MJj and the
channel indexa=hv , j , lj, wherev and j are the vibrational
and rotational quantum numbers for the H2 diatom,nv and l
are the quantum labels for the stretching vibration and rota-
tion of the van der Waals bond axisR, andJ andMJ are the
total rotational angular momentum quantum number and its
space-fixed projection. In addition, the space-inversion parity
p and the parity for permutation of two hydrogen atomss are
conserved quantities, but to simplify the notation they are
usually not shown. Of these indices, onlyhJ,MJ,p,sj are

truly good quantum numbers ofH̃0, although the monomer
vibrational indexv is usually a near-exact quantum number
andnv is an unambiguous state label. For complexes formed
from diatomic hydrogen, a single value ofj always domi-
nates the wave function for any discrete state andl is an
approximate quantum number which provides a useful zeroth
order ordering of the various states. For other species, how-
ever, j mainly serves as convenient “uncoupled limit” state-
ordering label andl is completely mixed.

In the ISE method, the overall rotation and diatom vibra-
tion basis functions characterizing the various coupled chan-
nels have the form

Fa
JMJsr ,R̂d = wv jsrdY jl

JMJsr̂ ,R̂d, s15d

in which wv jsrd is a radial wave function for a free diatomic
hydrogen molecule and

Y jl
JMJsr̂ ,R̂d = o

mj,ml

Cs j ,l,J;mj,ml,MJdYj ,mj
sr̂ dYl,ml

sR̂d s16d

are the usual total orbital angular momentum eigenfunctions
for an atom-linear molecule system, defined as linear combi-
nations of products of the spherical harmonic eigenfunctions

Yj ,mj
sr̂ d andYl,ml

sR̂d associated with the free rotation of the

diatom and of the molecular axisR̂, respectively, and
Cs j , l ,J;mj ,ml ,MJd are Clebsch–Gordon coefficients. Since
the interaction potential for the H2 diatom is accurately
known,63 accurate diatom eigenfunctionswv jsrd may be
readily generated using standard methods.81

A convenient feature of the XC potential form is the fact
that it is a linear function both of the fitting parametersFl,k

andCn
l,k coefficients and of the powers of the diatom stretch-

ing coordinatej. This means that it may be written in the
form
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VsR,u,jd = o
k=0

kmax

jkVksR,ud

= o
k=0

kmax

jk o
l=0s2d

lmax

Vl,ksRdPlscosud

= o
iù1

pi o
k=0

kmax

jkWk,isR,ud

= o
iù1

pi o
k=0

kmax

jk o
l=0s2d

lmax

Wk,i
sldsRdPlscosud, s17d

in which hpij are the adjustable parametershFl,kj, hQn
sldj, and

hCn
l,kj of Eqs.s11d, s10d, ands7d, respectively, and the func-

tionsWk,isR,ud;]VksR,ud /]pi andWk,i
sldsRd are properties of

the XCs0d surface and do not change from one cycle of the fit
to the next. Since theEHL

s1d component of the XC potential
form is not a simple linear function of the Legendre func-
tions Plscosud, the Wk,i

sldsRd fand Vl,ksRdg functions are de-
termined numerically by orthogonal projection

Wk,i
sldsRd = kPlscosuduWk,isR,udl. s18d

However, this calculation need only be done once, and the
resulting one-dimensional radialsin Rd arrays stored for re-
peated use throughout the fit. The computational effort saved
by this step is quite significant, a point favoring potential
functions of this form. In the present work it was found that
these radial functions need only be generated forlø6; ex-
tending the angular series tol=12 affected the H2–Kr ei-
genvalues by less than 0.000 01 cm−1.

The partial derivatives required by the least-squares fit-
ting procedure may be written as

kCau]V/]piuCal =E dRo
a,a8

xa
asRdxa8

a sRd

3sFa
J,MJu]VsR,u,jd/]piuFa8

J,MJd, s19d

in which the notationsFa
J,MJu . . .uFa8

J,MJd implies integration
over all coordinates exceptR.82 Using Eqs.s15d and s17d,

sFa
J,MJu]VsR,u,jd/]piuFa8

J,MJd

= o
k=0

kmax

kwv jujkuwv8 j8lsY jl
JMJuWk,isR,uduY j8l8

JMJd

= o
k=0

kmax

kwv jujkuwv8 j8l o
l=0

lmax

Wk,i
sldsRdfls j ,l ; j8,l8;Jd, s20d

in which fls j , l ; j8 , l8 ;Jd=kY j l
JMJuPlscosuduY j8l8

JMJl are
Percival–Seaton coefficientsswhich do not depend on
MJd.

83,84As mentioned above, at a chosen grid of pointshRij
the various radial functionsWk,i

sldsRid may be calculated once
and stored for use in all subsequent eigenvalue derivative
calculations and all subsequent fit iterations. In the present
case, the radial grid used typically has ca. 3000 points and
only 70–90 different radial functions are required, so the
storage requirements are quite modest. Note too that the de-

rivatives of theC
n8
sl8dsjd data required by the fit are readily

generated, since their derivatives with respect to theFl,k are

identically zero, and whenC
n8
sl8dsjd is represented by Eq.s7d

we have

]Cn8
sl8dsjd/]Cn

l,k = dnn8dll8j
k, s21d

while when Eq.s10d is used forC
n8
sl8dsjd we have

]Cn8
sl8dsjd/]Qn

sld = dnn8dll8 o
k=0

kmax
sn,ld

Cn,th
l,k jk. s22d

B. Hellman–Feynman derivatives for a hyperfine
transition

On taking account of nuclear spinI , the total Hamil-
tonian for our H2–Rg systems may be written as the sum of
the nuclear motion Hamiltonian plus a hyperfine Hamil-
tonian operator,

H̃tot = H̃0sR,r d + H̃HF s23d

and the total angular momentum becomes

F = I + J = I + j + l , s24d

in which F and MF replaceJ and MJ as the good quantum
numbers, the state label becomesm=hv , j ,nv , l ,J,I ,F ,MFj
and the angular basis expands to include the nuclear spin

eigenfunctionsYI,MI
sÎ d. In this case the total angular momen-

tum wave functions become

Z jlJI
FMF = o

MJ,mI

CsJ,I,F;MJ,MI,MFdY jl
JMJsr̂ ,R̂dYI,mI

sÎ d s25d

and the total basis functions characterizing the different
channels are the product functionswv jsrd Z jlJI

FMF.
The present discussion of hyperfine splittings in H2sv

=0,j =1d–Kr assumes thatI is a good quantum number with
the ortho-H2 value of I =1. As a result, when the nuclear
spin/nuclear spinsSSd and nuclear spin/rotationsSRd inter-
action terms for the H2 molecule are included in the Hamil-

tonian, H̃HF=H̃SS+H̃SR, eachJ level of a complex formed
from ortho-H2 is split to three levels, corresponding toF
=J−1, J, andJ+1. Since the matrix elements of the hyper-
fine Hamiltonian terms are typically 105 times smaller than
the spacings between adjacent nuclear motion levels for
these species, the hyperfine level shifts may be evaluated
using first order perturbation theory, as the expectation value

of H̃HF over the total wave function.59 Because the off-
diagonal coupling between differentJ values is very weak,
those terms are neglected andJ treated as a good quantum

number.59,85 Moreover, the matrix elements ofH̃HF with the
basis functions of Eq.s25d happen to be diagonal inl and the
Hamiltonian matrix is block diagonal inhF ,MF ,I ,J,p,sj.

Because of the weakness of theH̃HF interaction, it is also
reasonable to neglect it in the ISE eigenvalue calculations
which determine the total wave function for levelm
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Ym = o
a,nv

cnv,a
smd fnv

a sRdwv j
srdZ jlJI

FMF, s26d

in which fnv

a sRd is a radial basis functionsnv=0,1, . . .d for
channela, as determined by the ISE procedure.86 The sensi-
tivity of a hyperfine transition energy to the intermolecular
potential therefore arises from the fact that it is sensitive to
the precise mix of the different channel basis functions in
this overall wave function:

]EHF

]pi
= 2KYmuH̃HFu

]Ym

]pi
L . s27d

For an infinitesimal changedpi
in one of the potential

parameters, the effect on the total wave function of the re-

sulting change in the HamiltoniandH̃tot may be calculated by
perturbation theory, and the associated first-order wave func-
tion yields

]Ym

]pi
= o

m8Þm

kYmu]V/]piuYm8l

Em − Em8
Ym8, s28d

in which the numerator involves the same potential deriva-
tive matrix elements seen in Eq.s19d. Because the Hamil-
tonian is block diagonal inhF ,MF ,J,I ,p,sj and matrix ele-

ments ofH̃HF are diagonal inl, them8 summation only runs
over channel basis functions with labelshv8 , j8 ,nv8j
Þ hv , j ,nvj:

kYmuH̃HFuYm9l = o
v,j ,nv,v8,j8,nv8,l

ca,nv

smd ca8,nv8
sm9d

3sZ jlJI
FMFwv juH̃HFuZ j8lJI

FMFwv8 j8dkfnv

a ufnv8
a8l,

s29d

in which a=hv , j , lj anda8=hv8 , j8 , lj, and the hyperfine ma-

trix elementssZ j lJI
FMFwv juH̃HFuZ j8lJI

FMFwv8 j8d are generated from
the H2 spin coupling constants, as described in Refs. 85 and
59. Note that an approximation implicit in our use of the
Feynman–Hellman theorem for hyperfine transitions is that
the wave function is actually a normalized eigenfunction of

the HamiltonianH̃0 and not ofHHF or H̃tot. However, in view
of the small magnitude of the hyperfine splittings, this should
introduce negligible error.

C. General considerations and treatment of
metastable levels

All assigned observed IR transitions of H2–Kr and
D2–Kr are associated with groundnv=0 van der Waals bond
stretching levels, and the anisotropic coupling is fairly weak.
The zeroth order secular equation basis used in our ISE cal-
culations therefore consists of all radial eigenstates supported
by the effective radial “distortion” potential59 associated with
the dominant channel. In practice, this means that two zeroth
order basis functions were used for levels correlating with
small values ofl, and one for large-l states. All of the cor-
rections iteratively generated by the ISE procedure were
combinedsrecontractedd into a single effective radial correc-
tion function for each channel,60 which means in practice
that ISE iterations past the first one used a total of three basis
functions for smalll levels and two for large-l ones.

In the calculations reported herein, values of the atomic
masses and physical constants were taken from Ref. 87. As
no Kr isotope splittings were observed in the infrared spec-
tra, the spectroscopic data simulations were performed using
the mass of the most common isotope,84Kr s57% natural
abundanced. Note, however, that use of the abundance-
averaged atomic mass yields a reduced mass differing by
only 0.003%, a change which would have a negligible effect
on the calculated results. The H2 and D2 monomer level en-
ergiesEdsv , jd which define the asymptotes of the various
radial channel potentials used in the calculations are listed in
Table IV; it is important to specify these values, since it is
the differences between the observed transition energies and
these reference spacings which allows information regarding
the j dependence of the intermolecular potentials to be de-
termined empirically.

While thesessentially exactd ISE method for truly bound
states is explained fully in Ref. 60, the associated treatment
of metastable states deserves further comment. An exact
treatment of metastable states would generally require the
use of scattering theory methods, which are not readily com-
patible with an iterative fitting analysis of discrete spectro-
scopic data. We therefore followed the approach of Refs. 60
and 10 in using approximate methods to calculate the effects
of open channels on the energies and widths of such levels.

As discussed in Ref. 60, two types of metastable levels
must be considered. The first are “Feschbach predissocia-
tion” levels: these are levels of the zeroth-order effective

TABLE IV. Experimental diatom vibration-rotation energiesEdsv , jd sin cm−1d which define the asymptotes of the radial channel potentials involved in the
calculations.

v j =0 j =1 j =2 j =3 j =4 j =5

H2 0 0.0 118.486 75 354.373 50 705.518 86 1 168.798 23 1 740.189 10
1 4 161.168 7 4 273.741 44 4 497.839 10 4 831.392 15 5 271.380 40 5 813.922 86
2 8 087.005 0 8 193.798 15 8 406.365 0 8 722.705 65 9 139.902 5 9 654.201 1
3 11 782.360 0 11 888.510 0 12 084.701 15 12 384.084 27 12 778.818 95 13 265.276 77

D2 0 0.0 59.780 42 179.064 10 357.314 42 593.716 80 887.214 42
1 2 993.610 0 3 051.284 72 3 166.359 6 3 338.302 62 3 566.324 7 3 849.405 72
3 5 868.149 5 923.746 6 034.678 6 200.426 6 420.220 6 693.056
3 8 625.71 8 679.24 8 786.11 8 945.73 9 157.42 9 420.29
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one-dimensional distortion potential59 associated with the
dominant channel, which lie above the dissociation asymp-
tote for one or more of the channels to which it is coupled.
For example, a “bound”slow ld state of H2sv=1,j =2d–Kr
lies above the asymptotes both for rotational predissociation
to yield H2sv=1,j =0d and for vibrational predissociation to
yield H2sv=0,j ø8d. The level shift and broadening due to
this type of coupling is calculated using the Feschbach for-
malism used in the SEPT procedure of Ref. 59. Such calcu-
lations are perturbative and can, in principle, be performed
without including any basis functions for the open channels
in the ISE basis. However, to improve our accuracy, basis
functions associated with any bound levels of the distortion
potential for such open channels were always included in our
ISE basis so that only coupling to the continuum component
of the open channel had to be estimated by perturbation
theory. The natural incorporation of this perturbative treat-
ment of level shifts and broadening due to opensor distant
closedd channels into the normal computational procedure is
one of the great advantages of the ISE method.

As discussed in Ref. 60, errors in level energies due to
this perturbative treatment are generally expected to be only
a small fraction of the level widths, although the errors in the
analogously calculated widths could be somewhat larger,
particularly for very long-lived states. To allow for this ad-
ditional source of uncertainty, the total uncertainty used to
weight experimental transition frequency “i” involving one
of these Feschbach-metastable levels was

utot,i = Îsuexp,id2 + s0.2Gmd2, s30d

in which uexp,i is the estimated experimental line position
uncertainty andGm the total calculated width for the predis-
sociating upper or lower levelm.

The second type of metastable behavior is the “tunneling
predissociation” of levels which lie above the dissociation
limit associated with the diatom vibration-rotation energy
Edsv , jd correlated with that particular state, but are bound
behind asmainlyd centrifugal potential energy barrier associ-
ated with the effective diagonal potential86 for the dominant
contributing channel. This type of predissociation affects the
highest observedl levels of complexes formed from H2 or
D2 in any given internalsv , jd state. Following Ref. 60, the
effective radial channel basis functions used to represent
such “quasibound” levels were determined using the Airy
function boundary condition,88 with the tunneling predisso-
ciation width being calculated semiclassically.88,89 Single-
channel tunneling predissociation widths obtained in this
way are accurate to within a few percent of their magnitude,
and the associated level energies are also accurate to within a
few percent of those widths. This is as good as the accuracy
with which the widths and positions of predissociation
broadened lines may be measured experimentally, and hence
is satisfactory for present purposes. Note that these tunneling
level widths would be combined with any Feschbach predis-
sociation contributions to yield the total level widthGm of
Eq. s30d.

One minor extension of this second procedure intro-
duced here concerns the large-R cutoff of radial basis func-
tionsfnv

a sRd associated with tunneling-predissociation levels.

In the conventional treatment,81,88 the outer boundary condi-
tion imposed on the quasiboundstunnelingd level wave func-
tion requires it to match an inwardly increasing Airy function
at the third turning pointR3=R3sEd on the outer wall of the
effective potential barrier, and on convergence the resulting
radial eigenfunction is normalized on the intervalf0,R3g and
set to zero forR.R3. However, values of that function
would abruptly drop to zero at the first radial mesh point past
R3. While it has no effect on the calculated single-channel
level energy or width, this discontinuity is inappropriate for a
realistic radial channel function and tends to cause instabili-
ties when such functions are used later in the ISE procedure.
To correct for this, after the Airy function boundary condi-
tion has been applied in the usual way, the resulting eigen-
function is propagated outward to the first node pastR3 and
truncated there.

Note that the perturbative Feschbach formalism treat-
ment of the effect of open channels on level energies and
widths also applies to quasiboundstunneling-predissociationd
levels which are coupled to channels sharing the same dis-
sociation limitsi.e., have the samev and jd but have different
l values. Thus, as far as coupling to open channels is con-
cerned, bound and quasibound levels are treated using the
approximate SEPT procedure.59 While this introduces some
additional error, only a small fraction of the assigned transi-
tions involve quasibound levels, and most of them have
moderately large widths which leads to them being substan-
tially deweighted by Eq.s30d. Thus, this small additional
possible source of computational error should not affect our
analysis significantly.

IV. THE ANALYSIS

A. Data used in the analysis

The experimental data set used in the present work con-
sists of McKellar’s new IR data for H2–Kr and D2–Kr and
the one hyperfine transition for H2–Kr reported by Waaijer
and Reuss.22,34 There are two key differences between the
new IR data and those used in the most recent previous
analysis.6 The first is the substantially improved precision
and larger number of assigned transitions; the line position
uncertainties associated with most of the new data are
0.004 cm−1, which is almost an order of magnitude better
than the 0.02–0.03 cm−1 of the measurements used in Ref. 6.
This improved resolution allowed many of the lines in the
congestedP- andR-branch regions of the H2–Kr Q1s1d and
S1s0d spectra to be resolved, and comparisons with simulated
spectra allowed manysthough not alld of those lines to be
assigned uniquely so they could be used in the analysis.

The second important feature of the new IR results is the
first-time observation of transitions associated both with the
pure rotationS0s0d transitions of H2–Kr and with theQ1s0d
vibration-rotation transitions of D2.

34 When combined with
the existingfS1s0d, Q1s1d and S1s1dg vibration-rotation data
types, the former make the analysis much more directly sen-
sitive to thej dependence of the potential anisotropy. Simi-
larly, the newQ1s0d sDv=1,j8= j9=0d data for D2–Kr sub-
stantially improves the ability of the data set to delineate the
j dependence of the isotropic part of the potential energy
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surface. Unfortunately, in contrast with the most recent IR
study of H2–Ar,24 the new H2–Kr and D2–Kr experiments
were unable to resolve transitions involving either the ex-
cited nv=1 van der Waals bond stretching levels or vibra-
tional overtoneDv=2 transitions of hydrogen. However, this
new data set is certainly much more sensitive to the details of
the potential anisotropy in the attractive well region than
were the earlier measurements.

In summary, the present analysis simultaneously fits to
143 mid- and far-IR transition frequencies for H2–Kr and 76
for D2–Kr.34 This is more than three times as many uniquely
assigned lines as were used in the fit which determined the
best previous potential for this system.6 The one hyperfine
transition of H2s0,1d–Kr reported by Waaijer and Reuss,22

which provides a very sharp measure of the radial average of
the potential anisotropy for a complex formed from ground
stateortho-H2, was also included in the experimental data
set. Finally, the data being fitted also included the 74finclud-
ing C12

s0d values generated from Eq.s9dg nonzero theoretical
Cn

lsjd values listed in Table III, each weighted by the inverse
square of the associated uncertainty.

B. Aspects of the fitting procedure

The present work uses an automatic nonlinear least-
squares fitting procedure to simultaneously optimize the
agreement with the three different types of data:sid the Nir

=219 infrared transition frequenciessird, sii d the Nhf=1 hy-
perfine transition frequencyshfd, and siii d the Nth=74 non-
zero theoretical values ofCn

sldsjd sthd. The ability of the
model to reproduce theNg known values of propertyg sg
=ir, hf, or thd is characterized by the dimensionless root
mean square deviation for that property,

ddg =H 1

Ng
o
i=1

Ng

fYg,i
obs− Yg,i

calcg2/sug,id2J1/2

, s31d

in which Yg,i
obs is the known or observed value of the property

Yg, Yg,i
calc the calculated value, andug,i is the associated un-

certainty. As mentioned above, for the IR data involving
metastable levels these uncertainties are generated using Eq.
s30d. A given value ofddg indicates that, on average, the
calculated values disagree with experiment byddg times the
uncertainty in the data. The global dimensionless root mean
square deviation minimized by the fit is then defined as

ddtot = hsNirddir
2 + Nhfddhf

2 + Nthddth
2 d/Ntotj1/2, s32d

where Ntot=sNir +Nhf+Nthd. Similarly, the value ofddexp

=hsNirddir
2 +Nhfddhf

2 d / sNir +Nhfdj1/2 is a measure of the ability
of the parametrized potential model to reproduce the experi-
mental spectroscopic data, while the value ofddth indicates
the quality of fit to theCn

sldsjd values of Table III.
To avoid problems due to incorrect spectroscopic assign-

ments, the initial stage of the analysis only used the com-
pletely unambiguously assignedQ1s0d IR bands andN andT
branches of theQ1s1d, S0s0d, andS1s0d IR bands. However,
as the analysis proceeded and the value ofddexp approached
unity, assignments for a large number of additional lines be-
came unambiguous, and they were added to the data set. The

few observed peaks in the IR spectra which had more than
one possible assignment were omitted from the fit.

Following Ref. 90 the convergence of our nonlinear fits
was determined by requiring that the changes in all param-
eters be less than the associated “parameter sensitivities,”
and the numbers of significant digits required to fully repre-
sent each of the final fitted parameters was minimized using
the sequential rounding and refitting procedure described
therein.

V. RESULTS

A. Optimized XC potential energy surface for H 2–Kr

A simulation of the data using thea priori XCs0d poten-
tial energy surface with no free parameters yielded the over-
all dimensionless deviation ofddexp=90 swhich indicates
that on average, the discrepancies with the input data are 90
times their uncertaintiesd. This is similar to the level of dis-
agreement found in Ref. 7 for the analogousa priori XCs0d
surface for H2–Ar. Relative to the high quality of the spec-
troscopic data, this is not a bad level of agreement, especially
in view of the relatively modest level of computational effort
required for generating a XC-type potential surface.

As the long-range coefficients are mainly determined by
the input theoreticalCn

sldsjd values, our initial fits varied only
the coefficientshFl,kj of the corrector function modifying the
Heitler–London interaction energy. After some experimenta-
tion it was found that use of fiveFl,k expansion parameters,
three forl=0 and two forl=2, gave a fairly good fit, and
this parametrization was used forF in the later stages of this
work.

The orders of the polynomials inj used to represent the
various long-rangeCn

sldsjd coefficients of Eq.s7d ssee Table
Vd were determined from independent fits to the theoretical
values alone. Note that forl.0, one of these expansion
coefficients is defined in terms of the others using the col-
lapsed diatom limit constraint of Eq.s8d. The absence of data
involving vibrationally excitednv=1 van der Waals bond
stretching levelswhich lies very close to dissociationd means
that the H2–Kr IR data are relatively less sensitive to the
long-range potential coefficients than was the case for
H2–Ar. This was demonstrated by the fact that when all of
the hCn

l,kj coefficients andhFl,kj parameters were allowed to
vary simultaneously, the fit failed to converge because of
excessive interparameter correlation. As a result, only the
coefficientshCn

l,kj for l=0 andn=6, 8, and 10 were allowed
to vary independently in the global fits, while those forl

=2 were fitted using the group scaling parametersQn
s2d of Eq.

s10d. The coefficients forlù4 andsn,ld=s12,0d were fixed
at rounded values based on the fit to theab initio Cn

sldsjd
values alonesi.e., Q8

s4d=Q10
s4d=Q10

s6d=Q12
s0d=1d.

The values of the 19 fitted parameters defining our final
recommended H2–Kr potential energy surface, with their
95% confidence limit uncertainties given in parentheses, are
listed in Table V, together with the fixedhCn

l,k=Cn,th
l,k j coeffi-

cients for lù2 svalues with no uncertainties shownd; the
requisiteRm

sld expansion parameters of Eq.s4d and EHL
s1d ex-

pansion parameters of Eq.s3d are listed in Table I. When
combined with the dispersion energy damping and corrector
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functions of Table II they provide a complete description of
our final recommended three-dimensional potential energy
surface for the H2–Kr system. While this final function has a
rather cluttered analytic form, aFORTRAN subroutine for gen-
erating it may be obtained either from the authors91 or from
the Journal’s online archive.70 Note that except for some of
the leadingCn

l,k coefficients, most of the fitting parameters
have no physical significance. However, the quality of the
theoreticalCn

sldsjd values does lead us to expect that the
hQn

sldj scaling parameters should be close to unity and that
the value ofddth for the final fit should be&1. Moreover, the
physical reasonableness of thea priori XCs0d potential sur-
face leads us to expect that the value ofF0,0 should be close
to unity and that the magnitude of otherFl,k’s should be
small. Tables V and VI show that all of these expectations
are satisfied, and the similarity of theCn

sldsjd functions for
the XCs0d and XCsfitd potentialssdashed vs solid curves in

Fig. 1d confirms the assertion that they are largely deter-
mined by the input theoretical values and their uncertainties,
and do not have to be modified excessively to yield agree-
ment with the spectroscopic data.

The quality of the fit to the three types of data used in
the analysis is indicated by theddg values listed in the upper
segment of Table VI, together with analogous results for the
XCs0d surface and for the TT3 potential of Ref. 6. The agree-
ment with the spectroscopic data is remarkably good, and is
particularly impressive when expressed in absolute terms:
the discrepancies with the experimental IR transition fre-
quencies are on average only 0.56 times the estimated ex-
perimental uncertainties, or 0.0028 cm−1. Comparison with
analogous predictions for thea priori XCs0d surface shows
that our morphing procedure, mainly depending on the five
hFl,kj parameters of Eq.s11d, improved the agreement with
the experimental data by a factor of about 160. The factor of

TABLE V. Parameters defining the optimized XCsfitd potential, with their 95% confidence limit uncertainties given in parentheses, where the expansion
parameters of Eq.s4d are given in Table I.

Heitler–London energy scaling parametersFl,k

k=0 k=1 k=2

l=0 1.016 94s0.0034d 0.083 5s0.0186d −0.103 5s0.038d
l=2 −0.055 94s0.0012d −0.092 9s0.0048d

Long-range expansion coefficientsCn
l,k sa.u.d

n l k=0 k=1 k=2 k=3 k=4

6 0 39.293s0.178d 34.695s0.83d 1.6 s0.51d −8.05s0.95d
6 2 3.828 83 8.254 6 3.662 −2.402 3 −1.638 53
8 0 977.21s18d 1 119.2s81d 313.87s55d −143.2 s100d
8 2 215.6 624.3 603. 194.3
8 4 11.124 41.15 44.7 14.674

10 0 29 437.s1 290d 42 730.s3 970d 22 617.s3 890d
10 2 7 491. 24 260. 28 450. 11 681.
10 4 470.2 2 380. 4 250. 2 340.2
10 6 39.3 145. 232. 126.3
12 0 1 063 800. 1 410 000. 581 000.

Long-range group scaling parametersQn
s2d n=6 n=8 n=10

fQn
sld;1 for lù4 andn=12g 1.0009s0.0043d 1.114s0.036d 1.153s0.064d

TABLE VI. Dimensionless rms deviationsddl for various properties predicted using the TT3 potential of Ref.
6, our a priori XCs0d potential, and our recommended XCsfitd potential for the H2–Kr system. The values of
ddvir anddddif were calculated assuming experimental uncertainties of ±5 cm3 mol−1 and 0.3%, respectively.

Input data Potential

Number Reference TT3 XCs0d XCsfitd

Properties used in the fit

IR data:l=ir 219 34 3.72 76.44 0.56
Hyperfine datum:l=nf 1 22 3.84 705.5 1.62
Long-range coefficients:l=th 74 71 n/a 0.12 0.55
Total: l=tot 294 22, 34, and 71 3.72 77.75 0.57
Property not used in the fit

Virial coefficients:l=vir 11 36 0.48 0.40 0.43
Diffusion coefficients:l=dif 19 37 4.31 1.42 0.74
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7 difference with the quality of predictions generated from
the TT3 surface is consistent with the factor of 5–7 improve-
ment in the precision of the IR data used in our analysis.
More detailed comparisons of the predictions of our final
recommended surface with the experimental IR data are pre-
sented in Ref. 34.

As discussed in Ref. 6, the radio frequency hyperfine
transition measured by Waaijer and Reuss22 depends mainly
on the expectation value of the anisotropy strength function
V2,0sRd fsee Eq.s17dg for levels of H2–Kr formed from
ground stateortho-H2sv=0,j =1d. This datum was also in-
cluded in the data set which determined the TT3 potential,
and that analysis reported a dimensionless discrepancy of
only 0.093, a value substantially smaller than the 3.84 shown
in Table VI. This difference between the present and
previous6 predictions of this property for the same TT3 po-
tential energy surface reflects the improved accuracy of the
ISE procedure used in the present simulations relative to the
SEPT procedure used in Ref. 6. The results in the second row
of Table VI show that our XCsfitd potential predicts this da-
tum almost within the estimated experimental uncertainty,
while the XCs0d potential does very much worse. The differ-
ence between the quality of this agreement also correlates
with the degree of similarity of the two anisotropy strength
functionsV2,0sRd in the attractive regionssee belowd.

Figure 1 compares the inputab initio values ofCn
sldsjd

and their estimated uncertaintiessfrom Table III, points and
error barsd with the fitted functions associated with the
XCs0d sdashed curvesd and XCsfitd ssolid curvesd potentials.
These two types of curves are of course identical forlù4,
because the associatedQn

sld values are fixed at unity. Fitting
to the experimental data clearly has only modest effects on
the functions representing theCn

sldsjd values, and the agree-
ment with the input values is generally well within the esti-
mated uncertainties. ForC10

s0dsjd this is markedly different
than the situation for H2–Ar, for which we were left with
very large relative discrepancies.7 This improvement is al-
most certainly due to the fact that an estimate of the higher-
orderC12

s0dsjd /R12 term generated from Eq.s9d was included
in the potential function model used here.

B. Comparisons, testing, and predictions of the new
potential

Figures 2–4 compare features of our recommended XC
sfitd potential with those of oura priori XCs0d surface and
the TT3 potential of Ref. 6. In particular, Fig. 2 shows how
the positionRm and depth« of the radial minimum varies
with relative orientation when the H2 stretching coordinate is
fixed atj=0. For all three surfaces the global minimum lies
at the collinear geometryu=0 sor pd. The XCsfitd and TT3

surfaces have almost the same energy minima, with depths
differing by only ,0.5% and minimum positions by only
,0.2% –0.4%; for thea priori XCs0d surface the analogous
discrepancies are 6%–8% and 1%, respectively. The well
depth of thea priori XCs0d potential clearly changes dis-

FIG. 1. Long-range stretching-dependent potential energy coefficients
Cn

sldsjd for H2–Kr. The input theoretical valuessRefs. 71 and 72d and their
estimated uncertainties are points with error bars, while the fitted functions
associated with the XCs0d and XCsfitd potentials are shown as dashed and
solid curves, respectively.

FIG. 2. Dependence of the potential minimum energys«d and its radial
position sRmd on u sat j=0d for three different H2–Kr potentials.
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tinctly too little with u, while its minimum position varies
too much. This is the same qualitative weakness found for
the XCs0d potential of H2–Ar,7 but again, the empirical scal-
ing introduced by theF function sufficed to yield a fully
satisfactory surface.

A more conventional way of comparing potentials in-
volves examining the radial strength functionsVl,ksRd de-
fined by the expansions of Eq.s17d: for the three surfaces of
interest, the four leading terms of this expansion are com-
pared in Figs. 3 and 4. Figure 3 shows the basic isotropic
potentialsV0,0sRd and the radial functionsV0,1sRd defining
their linear stretching dependence, while Fig. 4 shows the
analogous functions defining the strength of theP2scosud
anisotropy, V2,0sRd, and its linear stretching dependence
V2,1sRd. In spite of the marked differences among the aniso-
tropy strength functions seen in Fig. 4, it is interesting to
notessee Fig. 3d that the isotropic part of the XCs0d potential
and its linearj dependence are both quite similar to the
analogous components of the optimized XCsfitd surface. In
any case, it is clear that the basic isotropic potentialV0,0sRd
is remarkably similar for all three potentials, but there are
significant differences among the other components. In con-
trast, the magnitude ofddir for the XCs0d potentialssee Table
VI d reflects the substantial differences between its basicsk
=0d anisotropy strength function in the well region and those
of the other potentialsssee the lower segment of Fig. 4d.

The lower segment of Table VI and Figs. 5 and 6 com-
pare the ability of the TT3, XCs0d, and XCsfitd potential en-
ergy surfaces to predict values of two properties which were
not used in the determination of the XCsfitd potential, inter-
action virial coefficients36 and diffusion coefficients.37 For
both properties, the results shown were obtained from exact
quantum calculations92,93 using the isotropic, rigid-diatom
version of the indicated potential, as obtained by
averaging over the diatom stretching coordinate for the

specified vibration-rotation level to giveV̄v,jsR,ud
=kv , j uVsR,u ,rduv , jl, and then projecting out the isotropic

FIG. 3. Radial strength functionsV0,0sRd andV0,1sRd of Eq. s17d for three
different H2–Kr potentials.

FIG. 4. Radial strength functionsV2,0sRd andV2,1sRd of Eq. s17d for three
different H2–Kr potentials.

FIG. 5. Interaction virial coefficients for H2–Kr sin units cm3 mol−1d calcu-
lated from the XCsfitd ssolid curved, XCs0d sdashed curved, and TT3 sdotted
curved potentials, compared with experimental data from Ref. 36.
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componentV̄v,j
effsRd=kY0,0uV̄v,jsR,uduY0,0l. For the interaction

virial coefficients, additional tests included performing fully
classical and semiclassicalsi.e., classical plus first quantum
correctiond calculations94,95 using the vibrationally averaged

anisotropic potentialsV̄v,jsR,ud. While the predictions of the
pure classical calculation were slightly different, the semi-
classical calculation using the two-dimensional anisotropic
potential yielded results essentially identical to those ob-
tained from the quantal calculation on the isotropic potential.
We therefore concluded that the latter provide a very accu-
rate description of this property in the temperature range
considered.

Since second virial coefficients are known to be mainly
dependent on the effective isotropic radial potential energy
well, it is not surprising that the various calculated values of
ddvir seen in Table VI are all fairly similar. Thissexpectedd
inability to distinguish among different potential surfaces is
one reason that those data were not included in the least-
squares analysis to determine our H2–Kr potential.

In contrast with the interaction virial coefficients, the
diffusion coefficients show a very distinct preference for the
XCsfitd potential, a preference most clearly illustrated by the
difference plot in the upper segment of Fig. 6. While it is
gratifying to see the excellent level of agreement found for
the XCsfitd potential, in view of the results in the upper seg-

ment of Table VI it is, perhaps, somewhat surprising that the
predictions yielded by the TT3 potential are much worse than
those for the XCs0d potential. However, diffusion coeffi-
cients mainly depend on the isotropic average of the repul-
sive wall of the potential. The upper segment of Fig. 3 shows
that the TT3 curve deviates from the XCsfitd potential in that
region much more than does the XCs0d potential, and the
direction and relative magnitude of those differences appear
to be directly illustrated by the upper segment of Fig. 6.
Table VII presents values of the interaction virial coefficients
and diffusion coefficients for H2–Kr and D2–Kr systems
calculated from our recommended XCsfitd potential energy
surface assuming “normal”si.e., corresponding to the high
temperature equilibriumd abundance ofortho- and para-H2

or ortho- and para-D2. The results for the individualortho
and para species differ very slightly because of the small
differences in the associated vibrationally averaged poten-

tials V̄v,j
effsRd. It is interesting to notessee Table VId that the

XCs0d potential, which has no adjustable parameters, yields
diffusion and second virial coefficients which are almost in
full agreement with experiment.

Finally, Table VIII lists the energies and tunneling pre-
dissociation widthssin square bracketsd of all bound and
quasibound levels of complexes formed from ground-state
para-H2 andortho-D2, as predicted from our recommended
XCsfitd surface. Analogous results for complexes formed by
Kr with ortho-H2 or para-D2 are presented in the Journal’s

FIG. 6. Lower: Diffusion coefficients for H2 in Kr sin units cm2 s−1d calcu-
lated from the XCsfitd ssolid curved, XCs0d sdashed curved, and TT3 sdotted
curved potentials, compared with experimental data from Ref. 37. Upper:
Diffusion coefficients for H2 in Kr, as below, relative to values calculated
from the XCsfitd potential.

TABLE VII. Predicted second interactive virial coefficientsB12, diffusion
coefficientsD12

0 , and dimer formation equilibrium constantsKP sfor standard
state pressure of 1 bard calculated using the XCsfitd potential of Table V
assuming frozen “normal” relative abundances ofortho- and para-H2 and
D2 and the average atomic mass for Kr.

T sKd

B12 scm3 mol−1d D12
0 scm2 s−1d ln sKPd

H2–Kr D2–Kr H2–Kr D2–Kr H2–Kr D2–Kr

77 −109.367 −112.531 0.0561 0.0402 −3.522 −3.501
90 −82.951 −85.057 0.0766 0.0548 −3.953 −3.920

100 −68.295 −69.911 0.0943 0.0675 −4.231 −4.199
120 −47.632 −48.672 0.1346 0.0961 −4.730 −4.679
140 −33.824 −34.552 0.1806 0.1290 −5.143 −5.080
160 −23.988 −24.529 0.2322 0.1658 −5.488 −5.426
180 −16.654 −17.074 0.2889 0.2063 −5.791 −5.729
200 −10.996 −11.332 0.3504 0.2503 −6.061 −5.999
220 −6.511 −6.788 0.4166 0.2977 −6.305 −6.243
240 −2.881 −3.114 0.4873 0.3482 −6.527 −6.465
260 0.110 −0.090 0.5623 0.4019 −6.731 −6.669
280 2.609 2.435 0.6415 0.4586 −6.919 −6.858
300 4.724 4.571 0.7248 0.5182 −7.094 −7.033
320 6.532 6.396 0.8121 0.5808 −7.258 −7.197
340 8.092 7.969 0.9033 0.6461 −7.412 −7.351
360 9.449 9.337 0.9984 0.7141 −7.557 −7.495
380 10.636 10.534 1.0972 0.7849 −7.694 −7.632
400 11.683 11.588 1.1997 0.8583 −7.823 −7.762
420 12.609 12.521 1.3059 0.9344 −7.947 −7.885
440 13.434 13.351 1.4156 1.0130 −8.064 −8.003
460 14.171 14.093 1.5290 1.0942 −8.176 −8.115
480 14.832 14.759 1.6458 1.1779 −8.284 −8.223
500 15.428 15.358 1.7661 1.2640 −8.387 −8.326
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online archive.70 As one practical application of these results,
Table VII also lists values of the equilibrium constantsKP

for the formation of bimers between Kr and H2 or D2 in their
normal si.e., high temperature equilibriumd ortho and para
abundance

H2 + Kr� H2 − Kr s33d

calculated using standard quantum statistical mechanics
expressions.96 The bound-state partition function used in
these calculations included all quasibound levels for which
the tunneling lifetime is longer than the average time be-
tween collisions at a total pressure of one bar. It is interesting
to note that in spite of the very different densities of states,
these equilibrium constants are very similar for the two iso-
topic species. Similarly, theKP values for complexes formed
with ortho- and para-H2 differed only by between 3% and
1% from the lowest to highest of the temperatures consid-
ered, while forpara- andortho-D2 the analogous differences
ranged from 0.05% to 0.006%.

VI. SUMMARY AND CONCLUSIONS

This paper describes the determination of a reliable
three-dimensional potential energy surface for the H2–Kr
system, which represents the new high resolution IR data for
the H2 and D2 isotopomers within the experimental uncer-
tainties. This potential surface is based on the XC potential

model7,11,38–43,45–47which proved to be sufficiently realistic
and flexible that only five truly independent empirical pa-
rameters are required in the least-squares fits to optimize
agreement with the experimental data; these are theFl,k val-
ues listed in Table V. This contrasts with the eight param-
eters splus additional intuitively justified constraintsd re-
quired to define the best previous potential for this system.6

The realistic nature of the components of the basic XC
model ensures that this surface should extrapolate well into
regions not directly sampled by the experimental data used in
the determination of the potential energy surface. This is
confirmed by the quality of its predictions of interaction
virial coefficients and diffusion coefficients, data which were
not used in the analysis. While the present potential has a
somewhat complex form, its availability as a documented
FORTRAN subroutine should facilitate its use.70,91,97

It is also noteworthy that within the average experimen-
tal uncertainties of 0.004 cm−1, the 143 IR transitions for
H2–Kr and 76 for D2–Kr are fully accounted for by the
same three-dimensional potential energy surface. In other
words, within this resolution the differences between the IR
spectra of these isotopomers are fully accounted for by ordi-
nary vibrational averagingsover jd and mass considerations,
so no Born–Oppenheimer breakdown effects are evident.

The spectroscopic simulations required by the present
analysis used the ISE method, which is more accurate than
the SEPT procedure used in previous work on this family of
systems. The extension of the ISE method described herein
allowed the efficient calculation of exact derivatives of level
energies with respect to potential energy function param-
eters, an approach which is more accurate and much more
cost effective than the derivative-by-differences approach
used heretofore.

It is also appropriate to comment on the choice of the
functional form used for the XC potential, as summarized by
Eqs. s1d–s11d, especially in regard to its diatom bond-
stretching orj dependence. As indicated by Eq.s17d, the XC
potential may be expressed as a finite power series inj. For
the homonuclear H2 isotopomers, thej dependence of the
potential may therefore be fully taken into account in quantal
close-coupling calculations by simply replacingjk by
appropriate expectation values and matrix elements
kv8 , j8ujkuv9 , j9l for various hydrogen isotopomers, quantities
which are readily available63 and/or readily calculated.81

While not essential, maintaining this simple linear depen-
dence on matrix elements of powers ofj is one reason for
not allowing the scaling distanceRs fsee Eq.s4d and discus-
sion below Eq.s6dg to be a function ofj. For systems involv-
ing heteronuclear hydrogen isotopologuessHD, HT, or DTd
the situation is somewhat more complicated, but the treat-
ment is still a fairly straightforward procedure. Some details
regarding how this is done are included in the comments
about our potential function subroutine presented in the Ap-
pendix, while more details may be found in Ref. 97.

The fact that the angle dependence of the potential is
built into the Heitler–London exponent and damping func-
tion scaling distanceRs=Rmsu ,j=0d means that expanding
the VksR,ud functions in terms of the familiarVl,ksRd func-
tions of Eq. s17d requires the use of numerical quadrature

TABLE VIII. Energies of levels of H2sv , jd–84Kr formed from ground state
ortho- andpara-H2 calculated from the recommended XCsfitd potential en-
ergy surface, with predicted tunneling widths of metastable levels in square
bracketssall in cm−1d.

nv l =J

Esv , j ,nv , l ,Jd−Edsv , jd

H2sv=0, j =0d D2sv=0, j =0d

0 0 −28.468 −35.540
1 −27.426 −34.976
2 −25.350 −33.850
3 −22.258 −32.167
4 −18.176 −29.927
5 −13.145 −27.143
6 −7.225 −23.823
7 −0.510 −19.980
8 6.803f0.031g −15.630
9 14.44f0.79g −10.792

10 −5.494
11 0.228f0.000 00g
12 6.322f0.000 16g
13 12.681f0.036g
14 19.18f0.42g

1 0 −1.653 −8.085
1 −1.171 −7.693
2 −0.278 −6.914
3 0.79f0.36g −5.759
4 −4.246
5 −2.406
6 −0.288
7 1.995f0.035g
8 4.35f0.54g
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techniques.98 However, this is true for most other sophisti-
cated potential forms and imposes no significant difficulties.
Note that the two-dimensional vibrationally averaged poten-
tial for ground-state H2 is not simply the leading term in the
first expansion in Eq.s17d, V0sR,ud, since expectation values
of higher powers ofj are not zero for H2 sv=0,j =0d.

In conclusion, therefore, we believe that the most pro-
ductive means of developing realistic and flexible multidi-
mensional potential energy surface models for van der Waals
interactions is the type of approach used here. The compo-
nent Heitler–London and Coulomb interaction energies are
relatively easy to calculate, and even without adjustment
give a reasonable approximation to the final optimized iso-
tropic surface. The fact that they build in very realistic de-
scriptions of the shapes of and interactions between the com-
ponent species also means that relatively few empirical
parameters are required to refine such models to yield state-
of-the-art potentials.

APPENDIX: POTENTIAL FUNCTION SUBROUTINE
XCfitH2Kr

Dynamical calculations for an atom-diatom system are
generally either classical, simply requiring values of the po-
tential energy function itself for a particular system configu-
ration, or quantum-mechanical coupled-channel calculations
which require diagonal and off-diagonal radial channel po-
tential functions associated with various combinations of exit
channel diatom vibration-rotational levels. Consideration of
the polynomial orders associated with the parametrization of
Tables I and V shows that for our XCsfitd potential for
H2–Kr fsee Eq.s17dg kmax=5:

VsR,u,jd = o
k=0

5

jkVksR,ud. sA1d

The radial channel potentials required by coupled-channel
calculations4,99 may be generated readily from the expression

Vv,j
v8,j8sR,ud ; kv8, j8uVsR,u,jduv, jl = o

k=0

5

kjklv,j
v8,j8VksR,ud

sA2d

in which the requisite diagonal and off-diagonal matrix ele-
ments of powers of the diatom stretching coordinate

kjklv,j
v8,j8;kv8 , j8ujkuv , jl may be generated readily from the

accurately known potential functions for all isotopologues of
ground-state molecular hydrogen63,91 using standard
methods.81 To facilitate this type of application, our XCsfitd
potential energy subroutine XCfitH2Kr offers the option of
either having the subroutine return the value of the potential
energy function itself for a particular system configuration

sR,u ,jd or, if an appropriate set ofkjklv,j
v8,j8 matrix elements is

supplied, returning values of the vibrationally averaged ra-
dial channel functions of Eq.sA2d.70,91 However, this
straightforward approach would only be valid for interac-
tions involving the homonuclear isotopologs of diatomic hy-
drogen for which the diatom center of mass is located at the
bond midpoint about which our XCsfitd potential is ex-
panded.

Dynamical calculations require the potential energy or
radial channel potential functions to be defined in terms of
the center-of-mass Jacobi coordinatessRc.m.,uc.m.d, and for
heteronuclear hydrogen they differ significantly from the
“bond-midpoint coordinates”sRmid,umidd in terms of which
our XCsfitd potential is defined. For a classical calculation
which simply requires values of the potential energy at each
instantaneous system configurationsRc.m.,uc.m.,jd this pre-
sents little difficulty, since for any such system configuration
the associated bond-midpoint coordinate values may readily
be generated from the expressions98

Rmid = Rc.m.f1 + 2sd/Rc.m.dcosuc.m.+ sd/Rc.m.d2g1/2, sA3d

cosumid = sRc.m.cosuc.m.+ dd/Rmid sA4d

in which the distance from the diatom center-of-mass to the
bond-midpoint is

d = −
uM1 − M2u

2sM1 + M2d
r0sj + 1d sA5d

and M1 and M2 are the masses of the atoms forming the
hydrogen diatom. If its input parameters indicate thatM1

ÞM2, subroutine XCfitH2Kr uses Eqs.sA3d–sA5d to gener-
ate the corresponding bond-midpoint coordinate values, and
the potential function value is then generated from Eq.sA1d
in the usual manner.

For quantum coupled-channel calculations involving
heteronuclear hydrogen the situation is somewhat more
complicated,4,98,99 since the coordinate transformation of
Eqs. sA3d–sA5d must be appliedbefore any diatom vibra-
tional averaging is done. However, Ref. 98 showed that the
introduction of an orthogonal polynomial representation for
the j dependence of the potential energy function greatly
simplifies the problem of generating the vibrationally aver-
aged functions required for such cases. For any particular
system geometry, the value of the potential energy function
is of course the same, no matter which coordinate system is
used. As a result, with the center-of-mass and bond-midpoint
coordinates related by Eqs.sA3d–sA5d, we can write

UsRc.m.,uc.m.,jd = VsRmid,umid,jd = o
k=0

kmax8

jkUksRc.m.,uc.m.d

sA6d

in which kmax8 ùkmax=5, and values of the expansion func-
tionsUksRc.m.,uc.m.d are determined from an orthogonal poly-
nomial quadrature procedure.97 This allows radial channel
functions for heteronuclear isotopologs to be generated in the
same manner as for homonuclear hydrogen

Uv,j
v8,j8sRc.m.,uc.m.d ; kv8, j8uUsRc.m.,uc.m.,jduv, jl

= o
k=0

kmax8

kjklv,j
v8,j8UksRc.m.,uc.m.d. sA7d

Numerical tests show that across the domainjP f−0.9,
+0.9g, which extends far beyond the region for which our
XCsfitd surface is expected to be reliable, forkmax8 =8 this
approach yields transformed potential function values for
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HT–Kr sfor which d / r =0.2495d with an accuracy of better
than 10−4 cm−1 in the potential well and low-energy repul-
sive wall regions, which is two orders of magnitude more
precise than the potential function itself.97 This procedure is
implemented in subroutine XCfitH2Kr and is applied auto-
matically in cases for whichM1ÞM2 and the user requests
vibrationally averaged function values of the form of Eq.
sA7d. For further details, see Ref. 97.
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