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A three-dimensional, analytic potential energy surface for CO2–He that explicitly incorporates its

dependence on the Q3 asymmetric-stretch normal-mode coordinate of the CO2 monomer has been

obtained by least-squares fitting new ab initio interaction energies to a new three-dimensional

Morse/Long-Range (3D-MLR) potential function form. This fit to 2832 points has a root-mean-

square (RMS) deviation of 0.032 cm�1 and requires only 55 parameters. The resulting pure

ab initio potential provides a good representation of the experimental microwave and infrared

data: for 51 pseudo microwave and 49 infrared transitions the RMS discrepancies are 0.0110 and

0.0445 cm�1, respectively. Scaling this surface using only two morphing parameters yields an

order of magnitude better agreement with experiments, with RMS discrepancies of only 0.0025

and 0.0038 cm�1, respectively. The calculated infrared band origin shift associated with the n3
fundamental of CO2 is 0.109 cm�1, in good agreement with the (extrapolated) experimental value

of 0.095 cm�1.

I. Introduction

The CO2–He complex is an interesting test case with respect to

empirical1–3 and ab initio4–6 determination of intermolecular

forces, because CO2 is being used as a dopant molecule in

helium cluster studies.7–12 An accurate description of the

binary complex is an essential starting point for exploration

of larger clusters, as quantum Monte Carlo simulations of

doped He clusters are known to be very sensitive to the quality

of the pair potentials utilized for the simulations.8,13 Since the

first infrared spectrum of CO2–He complexes in the region of

the strong v3 fundamental band of CO2 was recorded in 1994

by Weida et al.,14 there have been three theoretical studies of

this complex.4–6 However, all predicted spectra were based on

2-D potential energy surfaces with CO2 fixed at its equilibrium

geometry, which may be an adequate approximation for

describing microwave spectra of ground-state species, but

not for infrared spectra involving excitation of an intra-

molecular CO2 vibrational mode. The most recent ab initio

potentials were obtained from MP4 or SAPT calculations,4–6

and were fitted to an exponential-spline-Morse-Morse-Spline-

Van der Waals4 or repulsive-plus-attractive analytical

forms.5,6 The root mean square (RMS) discrepancies of those

fits to the ab initio points ranged from 1.0 to 8.16 cm�1.

Recently, Le Roy et al. introduced the ‘‘Morse/Long-

Range’’ (MLR) radial potential function form which incorpo-

rates theoretically known long-range inverse-power behaviour

and is a single smooth analytic function, rather than being

made up of joined segments.15,16 Allowing parameters of that

radial function to vary with angle and with Q3 yields a

compact and flexible 3-D potential form that explicitly incor-

porates the Q3 asymmetric-stretch vibrational motion of CO2,

and has the correct angle-dependent inverse-power long-range

behaviour. This function is fitted to results of new high-level

ab initio calculations, and used to predict the rovibrational

eigenvalues of CO2–He, both without and with separation of

the inter- and intramolecular nuclear motions. The new ab

initio calculations and the techniques used for computing the

eigenvalues of the resulting potential energy surface are de-

scribed in section II. Section III then presents our analytic 3-D

potential function form and describes its fit to the ab initio

data. Section IV then presents predictions of the infrared and

microwave spectra for the He–CO2 dimer implied by this

surface, and shows that a very simple two-parameter morph-

ing of the pure ab initio surface improves the agreement with

experiment by almost an order of magnitude.

II. Computational methods

A Ab initio calculations

The geometry of a CO2–He complex in which CO2 is kept

linear can be described naturally using Jacobi coordinates

(R, y, Q3), where R is the distance from the center of mass

of CO2 to the He atom, y the angle between the vector pointing

from the center of mass of CO2 to He and the vector pointing

from one oxygen atom to the other, andQ3 is the normal mode

coordinate for the n3 antisymmetric stretch vibration of CO2,

which can be simply defined as

Q3 ¼ ðrCO½1� � rCO½2� Þ=
ffiffiffi
2
p

; ð1Þ

where rCO[1]
and rCO[2]

are the two C–O bond lengths. In our ab

initio calculations for the CO2–He complex, the average of the
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two C–O bond lengths was fixed at the experimental

vibrationally averaged ground state bond length,

r0 = 1.162086 Å.17

The intermolecular potential energies of CO2–He were

calculated using single- and double-excitation coupled-cluster

theory with a non-iterative perturbation treatment of triple

excitations [CCSD(T)].18 The basis set used was the augmen-

ted correlation-consistent quadruple-zeta (aug-cc-pVQZ) basis

set of Woon and Dunning for all atoms,19 supplemented with

an additional set of bond functions (3s3p2d1f1g) (where a =

0.9, 0.3, 0.1 for 3s and 3p; a= 0.6, 0.2 for 2d; a= 0.3 for f and

g) placed at the mid-point of the intermolecular axis R.20,21

The supermolecule approach was used to produce the inter-

molecular potential energy DV(R,y,Q3), which is defined as the

difference between the energy of the CO2–He complex and the

sum of the energies of the CO2 and He monomers. The full

counterpoise procedure22 was employed to correct for basis set

superposition error (BSSE). All calculations were carried out

using the MOLPRO package.23

The calculations were performed on a regular grid for all

three degrees of freedom. Five grid points corresponding to

Q3 = �0.115863, �0.054977, 0.0, 0.054977, and 0.115863 Å

were chosen for the CO2 stretching coordinate, while a rela-

tively dense grid of 30 points ranging from 2.2 to 10.0 Å was

used for the R stretching coordinate. The bending coordinate

was also sampled by a fairly dense grid consisting of 23 angles,

19 distributed from 0 to 1801 at intervals of 101, plus four

additional points (at 75, 85, 95 and 1051) in the region near the

T-shaped minimum. This yielded a total of 2070 symmetry-

unique points, a listing of which may be obtained from the

authors or from the journal’s on-line data archive.w
Our overall three-dimensional (3D) potential energy func-

tion for CO2–He is then written as

V(R, y, Q3) = VCO2
(Q3) + DV(R, y, Q3) (2)

where VCO2
(Q3) is the effective one-dimensional (1D) potential

energy curve for the asymmetric stretch of an isolated CO2

molecule, and DV(R, y, Q3) is the counterpoise-corrected

interaction potential described above. The calculation of the

1D potentials governing the n3 vibration of the isolated CO2

monomer were performed at the same [CCSD(T)]/aug-cc-

pVQZ level described above. This strategy was used to con-

struct recent ab initio 3D potential energy functions for

CO2–H2 and N2O–H2,
24–26 and in earlier empirical treatments

of H2-{rare gas} complexes.27–30 For a chosen fixed value of

the average C–O bond length, the potential energy was

computed at 29 values of Q3 ranging from 0.0 to 0.5 Å, and

those values were fitted to the even-power polynomial

sexpansion:

VCO2
ðQ3Þ ¼

X
n¼0ð2Þ

anðQ3Þn ð3Þ

The CO2 monomer geometry, and hence also the effective 1D

potential VCO2
(Q3) and the intermolecular potential DV(R, y,

Q3), depend not only on Q3, but also on the an assumed fixed

value for the symmetric stretch coordinate Q1 ¼ frCO½1� þ
rCO½2� g=

ffiffiffi
2
p

. The average values of the C–O bond length in

the ground (v3 = 0) and first excited (v3 = 1) states of CO2 are

r0 = 1.162086 and 1.166695 Å, respectively.17 These values

were used to define the fixed values of Q1, denoted �Q1
[v3],

governing the CO2 geometry when generating the effective 1D

potentials VCO2
(Q3) = VCO2

�Q1[v3](Q3) used to define the total

potential function of eqn (2) in the 3D eigenvalue calculations.

This approach differs from that used in recent 3D treatments

of CO2–H2 and N2O–H2, in which the same fixed Q1 value was

used to define the effective 1D monomer stretching potentials

when treating states of the complex associated with both the

ground (v3 = 0) and first excited (v3 = 1) levels of the

chromophore.25,26

An ideal effective 3D treatment would be to generate the

entire grid of DV(R, y, Q3) values with the CO2 geometry

constrained, in turn, by the �Q1
[v3] value for each monomer

vibrational level (v3) of interest. However, this would be

computationally expensive, and we believe (and the tests in

section IV confirm) that the main effect of the v3-dependence

of �Q1
[v3] is captured by its effect on the effective 1D monomer

potential VCO2

�Q1[v3](Q3). Hence, our overall potential

V(R, y, Q3) for complexes formed from CO2 in its ground

(v3 = 0) and first excited (v3 = 1) states was generated by

using a common DV(R, y,Q3) function defined by �Q1
[v3=0], but

with VCO2
(Q3) calculated using the different effective 1D

potentials VCO2

�Q1[v3](Q3) for v3 = 0 and 1. The coefficients of

the polynomial expansions used to represent the 1D effective

CO2 asymmetric stretch potentials of eqn (3) are presented in

Table 1.

B Hamiltonian without separating the intra- and

intermolecular vibrations

Within the Born–Oppenheimer approximation, the ro-vibra-

tional Hamiltonian of the CO2–He complex in the Jacobi

coordinate system (R, y, Q3) with the total angular momentum

represented in the body-fixed reference frame can be written

as31–33

Ĥ ¼� �h2

2m
@2

@R2
� �h2

2M

@2

@Q3
2

þ �h2

2mR2
þ �h2

2I

� �
�1
sin y

@

@y
sin y

@

@y
þ

bJ2
z

sin2 y

 !

þ
bJ2 � 2 bJ2

z

2mR2
þ cot y
2mR2

½ð bJx þ i bJyÞ þ ðĴx � iĴyÞ�bJz
þ �h

2mR2

@

@y
½ð bJx þ i bJyÞ � ð bJx � i bJyÞ� þ VðR; y;Q3Þ

ð4Þ

in which m�1 = mHe
�1 + (2mO + mC)

�1 and M = mCmO/

(2mO + mC), where mHe, mC and mO are the masses of the He,

C and O atoms,34 respectively, I is the rotational moment of

Table 1 Expansion coefficients an[cm
�1/Ån] of the one-dimensional

potentials VCO2

�Q1[n3](Q3) of eqn (3) for v3 = 0 and v3 = 1

Parameters (v3 = 0) (v3 = 1)

a0 0.0 0.0
a2 372070.1 359320.9
a4 648373.0 630396.0
a6 486800.0 473200.0
a8 159000.0 155000.0
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inertia of CO2, and V(R, y, Q3) is the total potential energy of

the system. The operators bJx, bJy and bJz are the components of

the total angular momentum operator Ĵ in the body-fixed

frame, and the z axis of the body-fixed frame lies along the

Jacobi radial vector R. The above Hamiltonian contains full

vibration–rotation coupling.

A direct-product discrete variable representation

(DVR) grid was used in the ro-vibrational level energy

calculation for the CO2–He complex.35 An 80-point sin-

DVR grid extending to 10 Å was used for the radial

R stretching coordinate, and a 70-point Gauss–Legendre grid

used for angular variable. For the Q3 coordinate, tests

showed that five potential-optimized DVR grid points for

the asymmetric stretch vibration of the CO2 molecule sufficed

to represent properly the upper and lower levels of the

fundamental n3 vibration of CO2. The Lanczos algorithm

was used to calculate the ro-vibrational energy levels by

recursively diagonalizing the discretized Hamiltonian

matrix.36 Tests showed that doubling the density of DVR

points affected the calculated level energies by less than

0.00001 cm�1, while extending the outer end of the radial grid

from 10 to 15 Å affected predicted spectroscopic transition

energies by less than 0.0001 cm�1 and level energies by less

than 0.00075 cm�1.

Since the effective 1D potentials VCO2

�Q1[v3](Q3) do not take

full account of coupling to the other internal degrees of

freedom of CO2, absolute IR transition energies calculated

from our 3D surfaces cannot be expected to be particularly

accurate. Thus, the calculated binding energies for complexes

formed from v3 = 0 and 1 CO2 should be combined with the

experimental CO2 vibrational level spacings when generating

predicted IR transition energies.

C Hamiltonian with separation of the intra- and

intermolecular vibrations

The above approach incorporates full coupling between the

intermolecular and Q3 vibrations. However, convergence of

the eigenvalue calculations is very slow at the high internal

energies associated with excitation of the n3 vibration of CO2,

since it requires a relatively large number of Lanczos itera-

tions. It would therefore be highly desirable to separate the

treatment of the inter- and intramolecular motions. Since the

n3 vibrational mode of CO2 has a much higher frequency than

do the intermolecular modes, Born–Oppenheimer separation

type arguments suggest that it should be a good approxima-

tion to introduce such a separation, as long as the off-diagonal

vibrational coupling is sufficiently small. In this approxima-

tion, the total vibrational wave function would be written as

the direct product

Cv(R, y, Q3) = fv(R, y)cv(Q3) (5)

where v is the quantum number for a specific vibrational state

of the free CO2 molecule, and the associated vibrational

wavefunction cv(Q3) is obtained by solving the 1D Schrödin-

ger equation:

��h2

2M

d2

dQ2
3

þ V
�Q
½v3 �
1

CO2
ðQ3Þ

� �
cvðQ3Þ ¼ EvcvðQ3Þ ð6Þ

The present work focuses on complexes formed from CO2 in

the ground (v3 = 0) and first excited (v3 = 1) states of its

asymmetric stretch n3 vibration. Using eqn (5), the vibration-

ally averaged CO2–He interaction potential for CO2 in vibra-

tional level v3 is

V ½v3�ðR; yÞ ¼
Z 1
�1

c�v3ðQ3ÞDVðR; y;Q3Þcv3
ðQ3ÞdQ3 ð7Þ

and the associated two-dimensional intermolecular

Hamiltonian is

Ĥ ¼ � �h2

2m
@2

@R2
þ

bl2
2mR2

þ Bv
bj2 þ V ½v3�ðR; yÞ ð8Þ

in which jˆ the total angular momentum operator for CO2, lˆ is

the angular momentum operator associated with rotation of

the axis R, and

Bv ¼ cv

�h2

2IðQ3Þ

���� ����cv

� 	
ð9Þ

is the CO2 inertial rotational constant, where I(Q3) is the

instantaneous CO2 moment of inertia. Note that the differ-

ences between the vibrationally averaged intermolecular

potentials �V [v3]
for different values of v3 arise both because

the wavefunctions cv3
(Q3) are associated with different values

of v3, and because they were obtained from different effective

1D potentials VCO2

�Q1[v3](Q3).

Using the above approach to average the 3D intermolecular

interaction potential DV(R, y,Q3) yielded separate two-dimen-

sional (2D) potentials for v3 = 0 and 1. Those vibrationally

averaged potentials �V [v3]
(R,y) are used in the simulations of

spectroscopic data described in section IV, and should be

useful for simulations of larger CO2–(He)N clusters. The 2D

eigenvalue calculations reported below utilized the experimen-

tal CO2 rotational constants Bv3

obs = 0.390219 and 0.387141

cm�1 for v3 = 0 and 1, respectively, in eqn (8). However,

almost exactly the same results are obtained using Bv values

generated from eqn (9) if the 1D potential functions used in

eqn (6) when determining the wavefunctions cv3
(Q3) are the

VCO2

�Q1[v3](Q3) functions discussed above.

III. Analytic potential energy surface for CO2–He

A Three-dimensional potential energy function

Our ab initio intermolecular potential energies DV(R, y, Q3)

for the CO2–He system were fitted to a generalization of the

MLR potential function form,15,16 which is written as:

DVMLRðR; y;Q3Þ ¼ Deðy;Q3Þ�

1� uLRðR; y;Q3Þ
uLRðRe; y;Q3Þ

e�bðR;y;Q3Þ�ypðR;y;Q3Þ
� �2 ð10Þ

in which De(y, Q3) is the depth and Re(y, Q3) the position of

the minimum along a radial cut through the potential at angle

y for a particular value of Q3, while uLR(R, y, Q3) is a function

which defines the (attractive) limiting long-range behaviour of

the effective 1D potential along that cut:

DV(R, y, Q3) C De(y, Q3) � uLR(R, y, Q3) (11)
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Since both He and CO2 are non-polar, the appropriate func-

tional form for uLR(R, y, Q3) is
37

uMLR
LR ðR; y;Q3Þ ¼

C6ðy;Q3Þ
R6

þ C8ðy;Q3Þ
R8

ð12Þ

and the denominator factor uLR(Re, y, Q3) is that same

function evaluated at R = Re(y, Q3). The radial behaviour

of the exponent in eqn (10) is expressed using the dimension-

less radial variable

ypðR; y;Q3Þ ¼
Rp � Reðy;Q3Þp

Rp þ Reðy;Q3Þp
ð13Þ

where p is a small positive integer which must be greater than

the difference between the largest and smallest (inverse)

powers in eqn (12), p 4 (8–6),16 and the exponent coefficient

function b(R, y, Q3) is a (fairly) slowly varying function of R,

which we write as a constrained polynomial:

bðR; y;Q3Þ ¼ypðR; y;Q3Þb1ðy;Q3Þ þ ½1� ypðR; y;Q3Þ�

�
XN
i¼0

biðy;Q3ÞypðR; y;Q3Þi

ð14Þ

Note that the definition of yp(R, y, Q3) and the algebraic

structure of eqns (10) and (14) mean that b(Re, y, Q3) =

b0(y, Q3), and that limR-Nb(R, y, Q3) � bN(y, Q3)

= ln{2De(y,Q3)/uLR(Re,y,Q3)}. The parameters De(y, Q3),

Re(y, Q3), and the various bi(y, Q3) all are expressed as

polynomials expansions in Q3 and Legendre expansions in y,
written in the form

Aðy;Q3Þ ¼
X
l¼0

X
k¼0

AlkQk
3Plðcos yÞ ð15Þ

where A = De, Re or bi.
Following Hutson et al.,37 the leading Van der Waals

coefficients C6(y, Q3) are expanded as

C6ðy;Q3Þ ¼
X2
l¼0ð2Þ

½Cl
6;indðQ3Þ þ Cl

6;dispðQ3Þ�Plðcos yÞ ð16Þ

where the induction term is approximated as

Cl
6,ind(Q3) = [mCO2

(Q3)]
2aHe (17)

in which mCO2
(Q3) is the stretching-dependent CO2 dipole

moment and aHe the polarizability of atomic He. The equili-

brium value of the isotropic dispersion coefficient C0
6,disp(Q3 =

0) is calculated from the He and CO2 pseudo-dipole oscillator

strength distributions (pseudo-DOSDs) of Meath and co-

workers,38,39 and its Q3 dependence is represented by that of

the isotropic average polarizability of CO2, �a(Q3) = [a||(Q3) +

2a>(Q3)]/3:

C0
6;dispðQ3Þ ¼ C0

6;dispðQ3 ¼ 0Þ �aðQ3Þ
�aðQ3 ¼ 0Þ


 �
ð18Þ

The leading anisotropic dispersion coefficient C2
6,disp is then

defined in terms of C0
6,disp(Q3) and the Q3-dependent parallel

(aJ) and perpendicular (a>) polarizabilities of CO2:

C2
6;dispðQ3Þ ¼ C0

6;dispðQ3Þ
akðQ3Þ � a?ðQ3Þ
akðQ3Þ þ 2a?ðQ3Þ


 �
ð19Þ

The Q3-dependent functions representing mCO2
(Q3), a||(Q3),

and a>(Q3) appearing in the above expressions were all taken

from the recent theoretical work of Haskopoulos and Mar-

oulis.40 Since we choose to represent our potential in ‘‘spectro-

scopists’ units’’, cm�1 and Å, it is convenient to introduce a

stretching coordinate in atomic units, DR ¼
ffiffiffi
2
p

Q3=a0 ¼
2:672476Q3 (for Q3 in Å), in terms of which our expression

for the various dispersion coefficients may be written (in units

[cm�1 Å6]) as:

C0
6,ind(Q3) = C2

6,ind(Q3) = 6665.7414[�1.21(DR)
+ 0.02(DR)2]2 (20)

C0
6,disp(Q3) = 72431.0{1 + [0.34(DR)2 � 0.33(DR)4]/

17.5372} (21)

C2
6;dispðQ3Þ ¼ C0

6;dispðQ3Þ
13:9222� 2:93ðDRÞ2 þ 1:00ðDRÞ4

52:6116þ 1:02ðDRÞ2 � 0:99ðDRÞ4

( )
ð22Þ

The coefficients C0
8(Q3) and C2

8(Q3) are then calculated from

C0
6(Q3) = [C0

6,disp(Q3) + C0
6,ind(Q3)] and the fixed values of the

ratios C0
8/C

0
6 = 4.65 Å2 and C2

8/C
0
6 = 4.85 Å2 reported by

Pack.41

B Least-squares fits

To commence any non-linear least-squares fit, it is necessary to

have realistic initial trial values of the fitting parameters. In the

present case of fits to the 3D Morse/Long-Range (3D-MLR)

form of eqn (10), they were obtained in the following manner.

First, a fit to the ordinary 1D MLR form (depending only on

R) was performed for all 690 distinct combinations of y and

Q3, using program phiFIT.42 This involved some experimenta-

tion to ascertain the most appropriate choice for the integer

parameter p appearing in the definition of the radial variable

yp(R;y,Q3) of eqn (13), and for the order N of the exponent

polynomial of eqn (14). The resulting values of De(y,Q3),

Re(y,Q3), and of bi(y,Q3) (for i = 0–N) were then fitted to

the (linear) Legendre expansions in y and polynomials expan-

sions in Q3 of eqn (15), and the resulting expansion coefficients

{Al,k} used as starting parameters in the global 3D fit to

eqn (10).

In the fits described below, the input ab initio energies were

weighted by assigning them uncertainties of ui = 0.1 cm�1 for

the attractive region where DV(R,y,Q3) r 0.0 cm�1, and ui =

DV(R,y,Q3) + 5.0]/50.0 cm�1 for the repulsive region

where (DV(R,y,f) 4 0.0 cm�1). Using these weights, a fit with

an RMS residual discrepancy of 0.032 cm�1 is obtained on

fitting the 2832 ab initio points at energies DV(R,y,Q3) o 1000

cm�1 to a 3D-MLR potential defined by only 55

fitting parameters. At the resolution of Fig. 1, the resulting

fitted potential clearly passes through all ab initio points

for any given combination of y and Q3. The values of the

resulting set of potential parameters are presented in Table 2,

while a FORTRAN subroutine for generating this potential

may be obtained from the authors or from the journal’s

This journal is �c the Owner Societies 2008 Phys. Chem. Chem. Phys., 2008, 10, 4128–4137 | 4131



supplementary data archive.w The compact form of the

final parameters reflects the use of the sequential

rounding and refitting procedure of ref. 43 in our fitting

program.

C Vibrationally-averaged two-dimensional potential functions

For each of the 690 combinations of {R,y} defining our grid

of potential function values, eqn (7) was used to average

our analytic 3D potential over the Q3 coordinate to determine

vibrationally averaged potential function values for the

interaction of CO2(v3 = 0) and CO2(v3 = 1) with He.

Similarly, vibrationally-averaged values of the long-range

potential parameters �C0
6 and �C2

6 were obtained by vibrationally

averaging the expressions given in eqns (20)–(22) using the 1D

eigenfunctions cv3
(Q3) of eqn (6), while the analogous

�C8
l coefficients were again fixed by ratios. With the angle-

dependent dispersion coefficients defined in this manner, the

two arrays of 690 vibrationally averaged potential energy

values were then fitted to 2D versions of the generalized

MLR function of eqns (10)–(14) in which the parameters

A(y,Q3), for A = De, Re and bi are replaced by Ā(y), and
eqn (15) by

�AðyÞ ¼
X
l

�AlPlðcos yÞ ð23Þ

Note that these Āl values are determined by fitting to the

vibrationally-averaged 2D potential function arrays, and not

by vibrationally averaging the expressions for A(y,Q3) deter-

mined from the fit to the 3D potential function array. The

parameters defining the resulting 2D potential energy surfaces

for 12C16O2(v3 = 0) � He and 12C16O2(v3 = 1) � He are

presented in Table 3. These 2D fits to interaction energies

below 1000 cm�1 require only 24 free parameters, and yielded

RMS discrepancies of B0.008 cm�1.

Fig. 1 Ab initio interaction energies and cuts through our analytic 3D

potential energy surface for CO2–He at various y and Q3 values.

Table 2 Expansion coefficients De
l,k [cm�1], Re

l,k [Å] and bi
l,k

defining our original (unmorphed) analytic 3D-MLR potential energy
surface for CO2–He, with the long-range coefficients defined
by eqns (20)–(22) and by the fixed ratios C0

8/C
0
6 = 4.65[Å2] and

C2
8/C

0
6 = 4.85[Å2]

De
0,0 32.070 Re

0,0 3.61855 b0
0,0 0.0308

De
0,2 2.8 Re

0,2 0.146 b0
1,1 �0.304

De
1,1 �10.43 Re

1,1 0.5637 b0
2,0 0.9402

De
2,0 �14.849 Re

2,0 0.83738 b0
3,1 0.11

De
2,2 25.4 Re

2,2 �0.489 b0
4,0 �0.019

De
3,1 49.45 Re

3,1 �0.8476 b0
0,0 0.71

De
4,0 14.646 Re

4,0 �0.2619 b1
1,1 �0.74

De
4,2 �33.0 Re

4,2 0.21 b1
2,0 0.253

De
5,1 �31.47 Re

5,1 0.2919 b2
0,0 �0.237

De
6,0 �8.086 Re

6,0 0.09393 b2
1,1 �0.40

De
6,2 52.0 Re

6,2 �0.20 b2
2,0 �0.21

De
7,1 23.7 Re

7,1 �0.119 b3
0,0 0.07

De
8,0 4.332 Re

8,0 �0.0312 b3
1,1 �1.9

De
8,2 �35.0 Re

9,1 0.014 b3
2,0 �0.29

De
9,1 �13.5 Re

10,0 0.0084
De

10,0 �2.15 Re
11,1 0.009

De
10,2 27.0 Re

12,0 �0.0015
De

11,1 7.3
De

12,0 0.98
De

12,2 �13
De

13,1 �3.8
De

14,0 �0.43
De

15,1 1.5
De

16,0 0.18

Table 3 Expansion coefficients �Dl
e[cm

�1], �Rl
e [Å] and �bli defining our

unmorphed two-dimensional vibrationally averaged potential energy
surfaces for 12C16O2(v3)–He for v3 = 0 and 1. The morphing would be
incorporated by multiplying all of the �Rl

e values by the scaling factor
fRe

=0.99577, and by multiplying the �Dl
e factors for the v3 = 1 surface

by the factor fDe

[v3=1] = 0.99842

Parameters defining 2D-MLR PES for 12C16O2(v3 = 0)�He
�De

0 32.039 �Re
0 3.61900 �b0

0 0.0304
�De

2 �14.787 �Re
2 0.83644 �b0

2 1.0010
�De

4 14.616 �Re
4 �0.26198 �b0

4 �0.0172
�De

6 �8.049 �Re
6 0.09367 �b0

6 0.6961
�De

8 4.315 �Re
8 �0.03118 �b1

0 0.180
�De

10 �2.135 �Re
10 0.00830 �b2

0 �0.235
�De

12 0.975 �Re
12 �0.00142 �b2

2 �0.203
�De

14 �0.439 �b3
0 0.15

�De
16 0.184

�C0
6 72457.62 �C0

8/ �C0
6 4.65

�C2
6 19136.06 �C2

8/ �C0
6 4.85

Parameters defining 2D-MLR PES for 12C16O2(v3 = 1)–He
�De

0 31.979 �Re
0 3.62001 �b0

0 0.0291
�De

2 �14.637 �Re
2 0.83496 �b0

2 1.0003
�De

4 14.559 �Re
4 �0.26246 �b0

4 �0.0161
�De

6 �7.977 �Re
6 0.09341 �b0

6 0.691
�De

8 4.281 �Re
8 �0.03117 �b1

0 0.177
�De

10 �2.104 �Re
10 0.00809 �b2

0 �0.237
�De

12 0.964 �Re
12 �0.00125 �b2

2 �0.204
�De

14 �0.457 �b3
0 0.15

�De
16 0.193

�C0
6 72510.69 �C0

8/ �C0
6 4.65

�C2
6 19063.06 �C2

8/ �C0
6 4.85
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IV. Results and discussion

A Features of the three-dimensional potential energy surface

For Q3 = 0.0 and�0.2 au, Fig. 2 displays contour plots of our
fitted 3D potential energy surface for CO2–He in the coordi-

nate system x = R2 cosy, y = R2 siny, where the radial factor
R2 was introduced in order to spread out the contours and

better illustrate the nature and locations of the various minima

and saddle points. The upper panel of Fig. 2 shows the

potential surface for the symmetric CO2 configuration, Q3 =

0. It has the form of a conventional 2D potential surface with

the two C–O bond lengths fixed at the average ground-state

value. As the He atom moves around the rigid linear CO2, an

absolute minimum of �49.57 cm�1 occurs for the T-shaped

geometries at R = 3.061 Å and y = 901, and local minima of

�26.69 cm�1 appear at the linear geometries where R = 4.264

Å and y = 0 or 1801. The other stationary points on this

surface are the barriers with energy �24.41 cm�1 at R= 3.977

Å and y = 90 	 49.21 on the minimum energy paths between

the absolute and local minima. As shown by rows 3–6 of

Table 4, the geometries and energies of these stationary points

are in reasonable agreement with those associated with pre-

vious ab initio surfaces for this system.4–6 However, rows 7 and

8 show that they differ substantially from those of two earlier

empirical potentials which have no barrier along the minimum

energy path between the linear and T-shaped geometries2,3

(cf. Fig. 3).

The lower panel of Fig. 2 shows the potential energy surface

for Q3 = �0.2 a0; this amplitude is slightly outside the

classical turning points at 	0.107 and 	0.185a0 and the root

mean square amplitudes of �Q3
rms = 0.075 and 0.130a0 for

CO2(v3 = 0) and CO2(v3 = 1), respectively. In this case the

T-shaped minimum lies at almost the same radial distance,

R = 3.062 Å, but its angular position shifts toward the

compressed CO bond, to y = 86.51, and the minimum

becomes slightly deeper, at �49.79 cm�1. Also, the two

linear minima are no longer identical with regard to position

(Re(y = 01) = 4.269 Å vs. Re(1801) = 4.251 Å) or well depth

(De(01) = 24.58 cm�1 vs. (De(1801) = 29.39 cm�1), the one

associated with the compressed CO bond becoming shallower

and the other one deeper. As shown in Fig. 2, the two

transition states are also no longer identical. Parameters

characterizing the various stationary point configurations are

summarized in Table 4, while Fig. 3 shows how the positions

Re(y,Q3) and depths De(y,Q3) of the radial minima depend on

angle and Q3.

B Bound states of our potential energy surface

The rovibrational energy levels of CO2–He may be labeled by

the six quantum numbers: v3, ns, nb, J, Ka and Kc, where v3 is

the asymmetric stretch quantum number of CO2, ns and nb are

Van der Waals vibrational stretch and bending quantum

numbers, and Ka and Kc denote the projections of the total

angular momentum J onto the a and c principal axes of

interia. Level energies and wave functions were obtained using

the 3D DVR method and Lanczos propagation algorithm

described in section II.B. While the 3D calculation are tech-

nically straightforward, the discussion of section II showed

that the 1D potential VCO2
(Q3) = VCO2

�Q1[v3](Q3) which we use

to represent the internal vibrational motion of the free CO2

molecule is different for the cases v3 = 0 and 1, because of the

different average C–O bond lengths for those states. This

affects the ‘pure 3D’ calculations because it leads to slightly

different 1D curves being included in the total potential energy

V(R,y,Q3) (see eqn (2)) appearing in the 3D Hamiltonian of

eqn (4).

Fig. 2 Contour plots of our potential energy surface for CO2–He in

cylindrical coordinates for Q3 = 0.0a0 (upper) and Q3 = �0.2a0
(lower).

Fig. 3 Energy (b) and position (a) of the minima on cuts through our

3D potential energy surface for CO2–He as functions of angle y, for
selected values of Q3 (in atomic units a0).
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Column 2 of Table 5 lists the energies of the J = 0

vibrational levels of CO2(v3 = 0)–He and CO2(v3 = 1)–He

on our 3D surface, and compares them to published results

reported for some previously reported surfaces (columns

5–7).3,4,6 Our surface supports five bound vibrational levels

for complexes formed from either ground-state (v3 = 0) or

excited (v3 = 1) CO2, and the level energies for those two cases

are very similar to one another. The nodal structure of the

wavefunctions for these states, shown in Fig. 4, indicates that

the first excited level is a vibrational bending state with

quantum state labels ns = 0 and nb = 1, while the three

higher ones are Van der Waals stretching states with labels

ns = 1 and nb = 0, 1 and 2. Note, however, that while these

{ns,nb} ‘assignments’ are useful descriptive labels, they have no

rigorous quantum mechanical significance.

The calculations described above were performed without

invoking a separation of the intra- and intermolecular vibra-

tional motions. However, since the internal energy of com-

plexes formed from vibrationally excited CO2(v3 = 1) is

relatively high, many Lanczos steps are needed to fully con-

verge the calculation of their eigenvalues. In particular, even

for J = 0, about 35 000 Lanczos steps are required to obtain

converged eigenvalues for all bound states of CO2(v3 = 1)–He,

and many more steps are required for higher angular momen-

tum states. In contrast, upon separation of intra- and inter-

molecular vibrations, only 1000 Lanczos steps are required to

fully converge the bound state energies for CO2 in either the

ground (v3 = 0) or excited (v3 = 1) state. It is therefore

important to ascertain the accuracy of results obtained by first

averaging over the CO2 stretching motion to obtain separate

2D potential energy surfaces associated with v3 = 0 and 1, as

described in section II.C.

Column 3 of Table 5 lists the vibrational energies calculated

from the 2D vibrationally averaged potential energy surfaces

associated with the ground (v3 = 0) and first excited (v3 = 1)

states of CO2, while column 4 shows their differences with the

3D results. The size of these differences clearly indicates that

our vibrationally averaged 2D potentials provide a very reli-

able description of this system. An important contribution

both to this good agreement and to the agreement with

experiment described below is the use of different effective

1D potentials VCO2

�Q1[v3](Q3) for different values of v3. One

indication of the fact that this is a good physical approxima-

tion is the fact that the value of Bv3=1 for CO2 calculated from

eqn (9) differs from experiment by only 0.048% if the 1D

wavefunction was obtained by solving eqn (6) for the potential

VCO2

�Q1[v3=1](Q3), while that difference increases by an order of

magnitude (to 0.75%) if the 1D potential associated with
�Q1

[v3=0] is used. Moreover, use of VCO2

�Q1[v3=0](Q3) in eqn (2)

when generating the 3D vibrational energies of the complex

for v3 = 1 would increase the discrepancies shown in the

bottom half of the fourth column of Table 5 by an order of

magnitude.

A more subtle effect on the calculation is associated with the

definition of the 1D function cv3=1(Q3) used to perform the

vibrational averaging of eqn (7) for v3 = 1. However, if that

function is obtained from eqn (6) using the 1D potential

obtained with Q1 = �Q1
[v3=0] rather than Q1 = �Q1

[v3=1], the

discrepancies for the case v3 = 1 seen in column 4 of Table 5

change very little.

C Comparisons with experiment, and morphing the surface

A small number of high resolution measurements of pure

rotational transitions of CO2–He complexes have been re-

ported by Xu and Jäger.44 Table 6 compares their observed

transition wavenumbers for the symmetric isotopologues (col-

umn 3) with those calculated from our vibrationally averaged

2D potential energy surface (columns 4 and 5). The fact, that

the calculated values in column 4 are all approximately 0.58%

smaller than experiment indicates that the moment of inertia

of the complex implied by our pure ab initio surface is slightly

too large. This property depends mainly on the average

intermolecular bond length Re, which is a natural parameter

Table 4 Properties of stationary points of the present (un-morphed) CO2–He potential energy surface for representative values of the asymmetric
stretch coordinate Q3, and comparisons with results for previously reported surfaces. All entries are given as {R [Å], y1, DV [cm�1]}, where y = 0
corresponds to the He atom lying at the end of the compressed CO bond

Q3(a0) T-shaped minimum Saddle point Linear minimum Type Ref.

�0.2 {3.062, 86.5, �49.79} {3.895, 131.0, �24.00} {4.251, 180, �29.39} Theory Present
�0.2 {3.062, 86.5, �49.79} {4.104, 28.7, �24.18} {4.269, 0, �24.58} Theory Present
0.0 {3.061, 90.0, �49.57} {3.977, 40.8, �24.41} {4.264, 0, �26.69} Theory Present
0.0 {3.07, 90.0, �50.38} {E4.0, E40, E�30} {4.25, 0, �28.94} Theory [6]
0.0 {3.1, 90.0, �45.98} {3.95, 45, �23.57} {4.3, 0, �26.31} Theory [5]
0.0 {3.103, 90.0, �44.41} {4.104, 39, �24.60} {4.26, 0, �27.69} Theory [4]
0.0 {3.14, 90.0, �41.00} {no saddle point} {4.75, 0, �15.80} Empirical [3]
0.0 {3.43, 90.0, �34.6} {no saddle point} {4.73, 0, �13.34} Empirical [2]

Table 5 Energies (in cm�1) for the five vibrational levels of our 3D-
MLR potential energy surface for CO2–He surface (expressed relative
to the relevant asymptote), compared with published results for some
previously reported surfaces

Present work

(ns, nb) 3D 2D {3D � 2D} Ref. 4 Ref. 3 Ref. 6

Complex formed from CO2(v3 = 0)
(0, 0) �17.041 �17.040 �0.001 �15.806 �15.689 �18.052
(0, 1) �8.752 �8.751 �0.001 �7.143 �9.756 �9.247
(1, 0) �7.644 �7.644 �0.000 �5.771 �6.968 �8.154
(1, 1) �4.034 �4.032 �0.002 �3.035
(1, 2) �1.283 �1.283 0.000 �0.576
Complex formed from CO2(v3 = 1)
(0, 0) �16.977 �16.975 �0.002 �15.818
(0, 1) �8.765 �8.762 �0.003 �7.155
(1, 0) �7.668 �7.666 �0.002 �5.781
(1, 1) �4.070 �4.065 �0.005 �3.068
(1, 2) �1.306 �1.303 �0.003 �0.596
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of the analytic MLR potential function form of eqn (10). It

therefore seems appropriate to morph our potential energy

surfaces by multiplying all of the Rlk
e expansion parameters of

Table II and �Rl
e parameters of Table 3 by a common scaling

factor in order to optimize the agreement with experiment. A

non-linear least-squares optimization yielded the scaling factor

fRe
= 0.99577. While this factor differs somewhat from the

value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9942
p

¼ 0:997 implied by the results in column 5 of

Table 6, that difference is readily explained by the fact that the

zero-point energy of the system is 2/3 of the well depth, so the

ground-state moment of inertia is not expected to scale simply

as the square of Re. In any case, the net result of this morphing

(see columns 6 and 7 of Table 6) is that the RMS discrepancy

with these experimental microwave data is reduced by two

orders of magnitude.

Although there exist very few pure rotational data for

CO2–He,44 sixty-six infrared transitions associated with excita-

tion of the v3 asymmetric stretch of the CO2 monomer within

the complex were reported by Weida et al.,14 and forty-nine of

them were assigned. Consideration of all pairs of such transi-

tion with a common upper or common lower level allows us to

generate a wide range of experimental ‘‘pseudo’’ microwave

data which may be used to further test our potential energy

surfaces. The results of these tests are summarized in Table 7.

Again, the predictions generated from our pure ab initio

potential energy surface are already in quite good agreement

with experiment. That agreement is substantially improved for

our radially morphed 2D-MLR potentials, with the final level

of agreement being close to the RMS experimental data

uncertainty of 	0.0019 cm�1. Full listings of the individual

differences summarized by Table 7 are available in Tables A-1

and A-2 of the supplementary data associated with this paper.w
In order to simulate the absolute infrared transition energies

for comparison with experiment, the difference between the

binding energies on our vibrationally averaged 2D potential

energy surfaces for v3 = 1 and 0 is added to the experimental

value of the fundamental band origin for the n3 transition

CO2, 2349.1433 cm
�1.17 Table 8 summarizes comparisons with

experiment of infrared transition energies calculated using our

vibrationally averaged 2D-MLR potential energy surfaces for

v3 = 0 and 1, first without and then with the application of

morphing parameters. Column 2 summarizes the differences

with the 12C16O2–He data of Weida et al.14 yielded by our

unmorphed ab initio surfaces, while column 3 shows that

application of only the fRe
morphing factor only improves this

agreement slightly. However, for both of these cases, the fact

that the average deviation and RMS deviation have approxi-

mately the same magnitude indicates that most of the dis-

crepancy is systematic. Moreover, the negative sign of the

arithmetic average discrepancy indicates that the levels of our

upper-state CO2(v3 = 1)–He potential surface are (relatively)

somewhat too strongly bound. Thus, although the existing

Fig. 4 Wave functions for the five lowest vibrational states of

CO2–He (v3 = 0).

Table 7 Comparison of experiment with pure rotational level spa-
cings of 12C16O2(v3)–He calculated from our vibrationally averaged
2D-PES, in which the experimental values are differences between
observed infrared transitions14 with a common upper state, for v3 = 0,
or a common lower state, for v3 = 1

Original 2D PESs Re-morphed PESs

v3 = 0 v3 = 1 v3 = 0 v3 = 1

No. data 29 22 29 22
Range {JKaKc

} 000 � 625 110 � 616 000 � 625 110 � 616
Average{calc.–obs} �0.0072 �0.0061 �0.0011 0.0003
RMSD{calc.–obs.} 0.0123 0.0092 �0.0022 0.0028

Table 6 Comparison of experiment44 with calculated pure rotational transition energies of CO2–He isotopologues (in cm�1) obtained from both
our original (columns 4 & 5) and our radially morphed (columns 5 & 6) 2D potential energy surfaces

Original PES Re–morphed PES

Transition
J0K0aK0c–J

00
K00aK

00
c

Isotopologue Observed44 calc. (calc./obs.) calc. (calc./obs.)

101–000
16O12C16O–He 0.591577 0.588126 0.994166 0.591546 0.999946

111–000
18O12C18O–He 0.578736 0.575424 0.994278 0.578759 1.000041

101–000
16O13C16O–He 0.590824 0.587316 0.994063 0.590732 0.999844

111–000
18O13C18O–He 0.578127 0.574756 0.994169 0.578088 0.999933

RMSD {calc.–obs.}: 0.003411 0.000054
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experimental data provide no information about the absolute

well depths on either 2D surface, it does tell us that relative to

that for CO2(v3 = 0)–He, the CO2(v3 = 1)–He surface is

slightly too deep.

These observations led us to introduce a second morphing

parameter to scale all of the �Dl
e parameters defining our 2D-

MLR potential for CO2(v3 = 1)–He. Applying a least-squares

optimization procedure to the 49 assigned transitions for
12C16O2–He yielded the dimensionless morphing parameter

fDe
[v3=1] = 0.99842. Applying this scaling factor to the

�Dl
e vales for the v3 = 1 surface yields the much improved

level of agreement summarized by the fourth column of

Table 8; it is gratifying to see that the remaining RMS

discrepancy of 0.0038 cm�1 approaches the RMS experimental

uncertainty of 0.0019 cm�1.14 The last two columns of Table 8

then show that this two-parameter morphing of our surfaces

(by both fRe and fDe
[v3=1]) yields similarly excellent agreement

with McKellar’s very recent IR data for the minor isotopolo-

gues 13C16O2–He and 12C18O2–He,45 Tables A-3 and A-4 of

the supplementary data provide detailed listings of the transi-

tions used in these comparisons, while Tables A-5 to A-7w list

the parameters Āl of the associated vibrationally

average 2D-MLR potentials for 13C16O2–He, 12C18O2–He,

and 13C18O2–He.

V. Discussion and conclusions

This paper presents an accurate new analytic 3D potential

energy surface for the CO2–He complex which explicitly

incorporates the dependence of the interaction energy on the

Q3 normal-mode coordinate of CO2. This surface is based on

ab initio interaction energies obtained at the CCSD(T) level

with a large aug-cc-pVQZ basis set and with bond functions

placed at the mid-point on the intermolecular axis. These

ab initio results are fitted to a 3D generalization of the

Morse/Long-Range (MLR) potential form which incorporates

the correct theoretically known long-range inverse-power

behaviour;15,16 having this correct long-range behaviour is

important if this potential is to provide a good description

of a CO2 molecule in medium to large sized (He)N clusters. The

global 3D fit to the 2832 ab initio interaction energies below

1000 cm�1 had a root-mean-square residual of only 0.032

cm�1 and required only 55 fitting parameters. Analogous

accurate 2D-MLR potential energy surfaces for CO2–He

complexes formed from CO2 in its ground (v3 = 0) and first

excited (v3 = 1) states were obtained by averaging this 3D

surface over the Q3 asymmetric stretch vibrational motion of

CO2, and tests showed that the approximate separation of

variables to yield these 2D surfaces had no significant effect on

the calculated eigenvalues.

The calculated spectroscopic properties of our pure ab initio

potentials are in excellent agreement with experiment. In parti-

cular, for 29 rotational level spacings of 12C16O2(v3 = 0)–He and

22 for 12C16O2(v3 = 1)–He, the RMS discrepancies are 0.0123

and 0.0092 cm�1, respectively, and a one-parameter morphing

of our surfaces reduced these discrepancies by almost a factor of

five. Similarly, for 49 infrared transitions of 12C16O2–He, the

RMS discrepancy yielded by the fitted ab initio surfaces was

0.044 cm�1, and introduction of a second morphing parameter

reduced this discrepancy by an order of magnitude.

All previous potential energy surfaces for this system were

two-dimensional, ignoring the effect of the Q3 stretching coordi-

nate of CO2. However, their comparisons with the IR data for
12C16O2–He empirically corrected for the vibrational frequency

shift by combining the calculated upper- and lower-level binding

energies with the experimental band origin for the complex,

rather than with the pure CO2 vibrational energy. For the best

of those earlier surfaces, the quality of agreement obtained in

that way (RMS deviations of 0.0394 and 0.0222 cm�1 for the

surfaces of ref. 4 and 6, respectively) were comparable to the

result obtained here (0.0445 cm�1, see Table 8) on combining the

binding energies of our 2D pure (un-morphed) ab initio surfaces

with the pure CO2 vibrational energy. The level of agreement

achieved here after our two-parameter morphing of our surfaces

is an order of magnitude better than that. Thus, our final

morphed potential energy surfaces (see Table 3) should provide

an excellent foundation for simulations to predict the properties

of CO2 clustered with multiple He atoms.

As in all previously reported studies of the Van der Waals

interactions of linear triatomic molecules, the present work

assumes perfect adiabatic separability of the bending and

symmetric-stretch modes of the linear molecule from all the

other degrees of freedom. Since all existing data involve CO2

in its v1 = v2 = 0 ground states, this implies that those degrees

of freedom may be ignored. Our justification for this approx-

imation is the fact that in a free CO2 molecule, the leading

potential energy coefficient due to inter-mode coupling is two

orders of magnitude smaller than the harmonic force constant

for the Q3 vibration.
53 Since the total shift of the CO2 n3 band

origin due to binding with a He atom is only ca. 0.1 cm�1, a

correction to a 1% contribution to the vibrational fundamen-

tal due to inter-mode coupling would be very small. The good

agreement with experiment for the pure rotational level spa-

cings of our un-morphed potential energy surface attests to the

validity of this approximation, at least as far as the spectro-

scopic properties of the perturbed n3 band are concerned.

In recent years it has become common to represent atom–mo-

lecule and molecule–molecule Van der Waals interaction poten-

tials by generalizations of the 1D ‘HFD’-type potentials initially

devised by Scoles, Meath, Toennies and co-workers,46–52 in

which the potential is represented by a sum of a repulsive

exponential term with attractive inverse-power dispersion (and

induction) terms which are ‘damped’ to take account of charge

overlap. In the generalization to atom–molecule and

molecule–molecule systems, the parameters of these 1D forms

Table 8 Comparison of experiment with calculated infrared transi-
tion frequencies (in cm�1) for the three symmetric isotopologues of
CO2–He

Potential: Original Re

morphed
Re and De morphed

Isotopologue 12C16O2
12C16O2

12C16O2
13C16O2

12C18O2

Number of data 49 49 49 24 29
Mean{calc.–obs.} �0.0435 �0.0407 �0.0003 0.0003 �0.0011
RMS{calc.–obs.} 0.0445 0.0424 0.0038 0.0020 0.0027
Dn0 {band origin shift} 0.0647 0.0644 0.1088 0.1065 0.1083
d(Dn0) {calc.–obs.} �0.0299 �0.0302 0.0142 0.0136 �0.0040
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are generally simply expanded either in Legendre polynomials,

or in terms of combinations of Legendre functions and powers

ofR.5,6,30,54–56 However, the resulting fitted potential parameters

have little direct physical significance or relationship to features

of the surface. In contrast, the central parameters of the MLR

form, De(y,Q3) and Re(y,Qe) directly characterize the position

and depth of the potential minimum and its dependence on

monomer orientation and internal stretching. Moreover, the

leading terms in the limiting long-range tail of the potential

are incorporated into the potential in a unified manner, rather

than being an additive term which must be cut off to prevent

unphysical behaviour at short distances. The MLR form also

can equally readily be used for chemically bound species (such

as15,16,57 N2, Ca2 and MgH), in which the inverse-power disper-

sion terms contribute only a (very) small part of the binding

energy. The relatively modest numbers of parameters required

to yield an accurate fit to our ab initio points, and the very good

agreement with experiment achieved with even the un-morphed

surface attest to the efficacy of this representation.

One further advantage of the MLR form is that it is

relatively straightforward to morph a global ab initio surface

fitted in this way, simply by multiplying the expressions for

De(y,Q3) and Re(y,Qe) (see eqn (15)) by scaling factors or

functions. This allows one to use comparisons with experi-

mental data to improve an ab initio surface without prejudi-

cing its essentially correct subtle features of shape. In the

present work, that morphing was done using simple constant

scaling factors, but it could equally involve factors depending

on monomer relative orientation or internal stretching, or even

on the radial separation R, preferably expressed as functions

of a dimensionless radial variable such as yp(R) (see eqn (13)),

without doing violence to the nature of the overall representa-

tion. Thus, in addition to providing a very good description of

the CO2–He system, the present work introduces a very

promising new approach for providing accurate and (rela-

tively) compact representations of multi-dimensional potential

energy surfaces.
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