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A combined-isotopologue direct-potential-fit (DPF) analysis of optical and photoassociation spectroscopy
data for the a3Rþu and 13Rþg states of Li2 has yielded accurate analytic potential energy functions for both
states. The recommended M3LR8:0

5;3ð3Þ potential for the a3Rþu state of 7,7Li2 has a well depth of
De ¼ 333:758ð7Þ cm�1 and an equilibrium distance of re = 4.17005(3) Å, and the associated scattering
lengths are aSL = �14.759(9) Å for 7,7Li2 and aSL = �1906(50) Å for 6,6Li2. In spite of a gap of more than
5200 cm�1 (between vð13Rþg Þ ¼ 7 and vð13Rþg Þ ¼ 62) for which there are no data, the DPF procedure
can readily yield a 13Rþg state potential energy function that accurately represents all of the available data
and smoothly bridges this gap. For 7,7Li2 our recommended M3LR3:6

6;3ð9Þ potential has a well depth of
De ¼ 7093:44ð3Þ cm�1, an equilibrium distance of re = 3.06514(9) Å, and its long-range tail is defined
by the lowest energy eigenvalue of a 3 � 3 matrix which takes into account the 3-state mixing near its
asymptote.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Modern theoretical studies of ultra-cold atomic gases demand a
very accurate knowledge of the potential energy curves (PECs) of
the systems of interest. Since Li2 is the second smallest uncharged
stable homonuclear molecule, its chemical and physical properties
are particularly interesting. In recent years, considerable effort has
been focussed on the lowest singlet states of Li2 [1–10]. However,
the properties of the triplet states of Li2 are much less well known.

The first observation of discrete spectra involving the lowest
triplet state of Li2 was reported in 1985 by Xie and Field [11],
who used perturbation-facilitated optical–optical double reso-
nance (PFOODR) techniques to excite 23Pg � a3Rþu emission. They
observed transitions into v a3Rþu

� �
¼ 0—6, but because of the lim-

ited resolution available at the time, their results have been super-
seded by later work. The first high-resolution triplet-system
measurements were reported in 1988 by Martin et al. [12], who
performed a Fourier transform study of the 13Rþg ! a3Rþu system
of 7,7Li2 involving vð13Rþg Þ ¼ 1—7 of the upper state and
v a3Rþu
� �

¼ 0—7 of the ground triplet state, with average measure-
ment uncertainties of only ±0.01 cm�1. Analogous results for the
same system of 6,6Li2, spanning the same ranges of vibrational lev-
els, and with the same accuracy, were reported in 1989 by Linton
et al. [13]. In 1999 Linton et al. reported [14] a high-resolution ver-
ll rights reserved.
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sion of the PFOODR experiment of Xie and Field [11] which yielded
observations (with uncertainties ranging from 0.005 to 0.01 cm�1)
of transitions into v a3Rþu

� �
¼ 0—9 from just over a dozen rotational

levels of v (23Pg) = 1 and 2. In addition, a two-photon photoassoci-
ation spectroscopy (PAS) experiment by Abraham et al. [15] had
yielded a direct measurement of the 0.4160 (±0.0013) cm�1 bind-
ing energy of the v = 10, N = 0 level of the a3Rþu state of 7,7Li2.

In addition to the seven vibrational levels v = 1–7 of the 13Rþg
state observed in the emission experiments, the binding energies
of levels v = 62–90 of 7,7Li2 and v = 56 � 84 of 6,6Li2 were measured
in a PAS study by Abraham et al. in 1995 [16]. However, to date
there has been no reported attempt to bridge the gap of more than
5000 cm�1 between these two sets of results in order to provide a
global description of this state. This problem is illustrated by Fig. 1,
which shows the regions of the a3Rþu and 13Rþg potentials associ-
ated with the data used in the present analysis (note that for
7,7Li2, our final fits did not include the v = 62 datum, see Section 3.1
for details regarding the data used). The task of bridging the chasm
for the 13Rþg state is complicated by the fact that in the region very
near its dissociation asymptote spanned by the PAS data, a transi-
tion from Hund0s case (b) to case (c) coupling leads to a mixing of
the 13Rþg state with two other states that also have 1g symmetry in
this long-range (r J 20 Å) region.

The only PECs which have been reported for the lowest triplet
states (a3Rþu and 13Rþg ) of Li2, are point-wise, semiclassical RKR
curves generated from Dunham or near-dissociation expansions
for the vibrational energies and Bv (inertial rotation) constants
[12–14]. For the 13Rþg upper state, those PECs were based only
on data for vibrational levels vð13Rþg Þ ¼ 1—7 [12,13], since that
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Fig. 1. Overview of the potential energy functions and observed vibrational levels
of the 13Rþg state associated with the present analysis. The inset shows a fragment
of the 13Rþg state potential at the energy range associated with the 6,6Li2 PAS data.
Not depicted in the diagram are the 137 transitions from the 23Pg state to the a3Rþu
state, and the one PAS datum for the a3Rþu state, that were also included in our
analysis.
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work preceded the photo-association spectroscopy (PAS) studies of
this system [15,16]. Thus, the best available potential for the 13Rþg
state provides no realistic predictions for those subsequently ob-
served high vibrational levels, took no account of interactions with
other states of Li2 near the dissociation asymptote of 13Rþg , and did
not incorporate the theoretically known long-range behavior.
Finally, in all studies of these states to date, 7,7Li2 and 6,6Li2 were
treated independently, and as a consequence, the effect of Born-
Oppenheimer breakdown (BOB) in this system remains unknown.

The present work presents a fully quantum mechanical direct-
potential-fit (DPF) data analysis which considers all of the optical
and PAS studies described above in terms of global analytic poten-
tial energy functions for the a3Rþu and 13Rþg states of Li2, while
independent term values are used to represent the 20 levels of
the 23Pg state giving rise to the observed high-resolution emission
into v a3Rþu

� �
¼ 0—9. The three longest-range inverse-power con-

tributions to the interaction energy are incorporated into the
a3Rþu and 13Rþg state potential energy functions, and the function
for the 13Rþg state explicitly accounts for the three-state mixing
mentioned in the previous paragraph. In addition, incorporation
of adiabatic Born–Oppenheimer breakdown (BOB) correction func-
tions in the hamiltonians for the a3Rþu and 13Rþg states allows the
data for the two isotopologues to be treated simultaneously.

Three aspects of this system made its analysis unusually
challenging. Firstly, the long-range tail of the 13Rþg state PEC is not
the familiar sum of simple inverse-power terms, since the 13Rþg state
couples strongly to two other states near the dissociation asymptote
(see Section 2.3.1). Secondly, the fact that the leading long-range
term of the PEC tail for the 13Rþg state is C3/r3 means that the
Morse/long-range (MLR) potential function leads to unphysical
long-range behavior if not addressed appropriately (see Sec-
tion 2.3.3) [10]. Finally, as illustrated by Fig. 1, the data for the
13Rþg state has a gap between v = 7 and v = 62 for 7,7Li2 and between
v = 7 and v = 56 for 6,6Li2. In both cases, these gaps span more than
70% of the corresponding well depths. Such a large gap in experi-
mental information has never (to our knowledge) been treated
successfully by a potential-fit analysis in a purely empirical manner.
2. Models and methodology

2.1. DPF data analyses and the radial hamiltonian

In a DPF spectroscopic data analysis, the upper and lower level
of every observed transition is assumed to be an eigenvalue of an
effective radial Schrödinger equation characterized by a parame-
terized potential energy function and (when appropriate) parame-
terized radial strength functions characterizing appropriate BOB
correction terms. Given some plausible initial trial parameter val-
ues for characterizing the relevant potential, the solution of the
associated Schrödinger equation yields an eigenvalue Ev,J and
eigenfunction wv,J(r) for each observed level. The difference be-
tween the energies of appropriate upper and lower levels then
yields an estimate of each observed transition energy, while use
of the Hellmann–Feynman theorem:

@Ev ;J

@pj
¼ wv;JðrÞ

@ bH
@pj

�����
�����wv;JðrÞ

* +
; ð1Þ

yields the partial derivatives required for performing a least-
squares fit of the simulated transitions of the experimental data.

Since the transition energies are not in general linear functions
of the parameters defining the effective radial hamiltonian, a DPF
analysis often requires the use of an iterative non-linear least-
squares fitting procedure. The quality of a given fit is characterized
by the value of the dimensionless root-mean-square deviation of
the Ndata experimental data (each of which is denoted by yobs(i))
from the predicted values ycalc(i) generated from the relevant
hamiltonian(s):

dd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ndata

XNdata

i¼1

ycalcðiÞ � yobsðiÞ
uðiÞ

� �2
s

; ð2Þ

in which u(i) is the uncertainty in the reported value of experimen-
tal datum i. In the present work, these fits were performed using the
publicly available program DPotFit [17], while the requisite initial
estimates of the potential function parameters were obtained by
applying the publicly available program betaFIT [18] to a preli-
minary set of RKR potential points generated using conventional
Dunham expansions.

As with most diatomic DPF analyses reported to date, the pres-
ent work is based on the effective radial Schrödinger equation
presented by Watson [19,20], and uses the conventions described
in Refs. [21,22]. In particular, the rovibrational levels of isotopo-
logue a of diatomic molecule AB in a given electronic state are
the eigenvalues of the radial Schrödinger equation:

� �h2

2la

d2

dr2 þ V ð1ÞadðrÞ þ DV ðaÞad ðrÞ
� 	

þ �h2JðJ þ 1Þ
2lar2 1þ gðaÞðrÞ

� � !
wv;JðrÞ

¼ Ev;Jwv;JðrÞ;
ð3Þ

in which V ð1Þad ðrÞ is the effective adiabatic internuclear potential for a
selected reference isotopologue labeled a ¼ 1; DV ðaÞad ðrÞ ¼
V ðaÞad ðrÞ � V ð1Þad ðrÞ is the difference between the effective adiabatic
potentials for isotopologue–a and isotopologue–1, g(a)(r) is the
non-adiabatic centrifugal potential correction function for isotopo-
logue–a, and the reduced mass la is defined by the atomic masses
MðaÞ

A and MðaÞ
B . Following standard conventions [19–23], the BOB

correction terms DV ðaÞad ðrÞ and g(a)(r) are both written as a sum of
contributions from component atoms A and B:

DV ðaÞad ðrÞ ¼
DMðaÞ

A

MðaÞ
A

eSA
adðrÞ þ

DMðaÞ
B

MðaÞ
B

eS B
adðrÞ; and ð4Þ

gðaÞðrÞ ¼ Mð1Þ
A

MðaÞ
A

eRA
naðrÞ þ

Mð1Þ
B

MðaÞ
B

eRB
naðrÞ: ð5Þ

Here DMðaÞ
A=B ¼ MðaÞ

A=B �Mð1Þ
A=B are the differences between the atomic

masses of atoms A or B in isotopologue–a and in isotopologue–1.
In the present case A = B = Li, and these expressions collapse to



1 Prior to the introduction of rref – re , the bðrÞ polynomials for potentials based on
data spanning a large fraction of the potential well often had coefficients, fbig, whose
magnitudes were orders of magnitude larger than the ranges of both ypðrÞ and bðrÞ.
For example, in MgH(X) [24], the coefficients of bðrÞ were larger by factors of up to
107. This is a signature of a ‘marginally stable’ function.
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DV ðaÞad ðrÞ ¼
DMðaÞ

Lia

MðaÞ
Lia

þ
DMðaÞ

Lib

MðaÞ
Lib

0@ 1AeSLi
adðrÞ; and ð6Þ

gðaÞðrÞ ¼
Mð1Þ

Lia

MðaÞ
Lia

þ
Mð1Þ

Lib

MðaÞ
Lib

0@ 1AeRLi
naðrÞ: ð7Þ

Although only a single radial strength function of each type must be
considered in the present case (eSLi

adðrÞ and eRLi
naðrÞ), both mass factors

(one for Lia and one for Lib) must be retained in order to allow us to
describe all possible molecular isotopologues.

2.2. The ‘Basic’ Morse/long-range (MLR) potential energy function

The next step is to introduce a function for representing the
effective adiabatic internuclear potential for the reference isotopo-
logue, V ð1Þad ðrÞ � VðrÞ. The present work is based on use of the ex-
tended Morse/long-range (MLR) potential energy function of Refs.
[10,24],

VMLRðrÞ ¼ De

�
1� uLRðrÞ

uLRðreÞ
e�bðrÞ�yeq

p ðrÞ
	2
; ð8Þ

in which De is the well depth, re is the equilibrium internuclear dis-
tance, and the radial variable in the exponent is

yeq
p ðrÞ �

rp � rp
e

rp þ rp
e
: ð9Þ

The function b(r), which accounts for details of the potential’s
shape, is defined so that

lim
r!1

bðrÞ � b1 ¼ ln
2De

uLRðreÞ

� �
; ð10Þ

and as a result, the long-range behavior of the potential energy
function is defined by the function uLR(r):

VMLRðrÞ ’ De � uLRðrÞ þ uLRðrÞ2=4De þ � � � ; ð11Þ

while the factor in the denominator uLR(re) is simply the value of
that long-range tail function evaluated at the equilibrium bond
length.

The theory of long-range intermolecular forces shows us that in
general, uLR(r) may be written in the form

uLRðrÞ ¼
Xlast

i¼1

Dmi
ðrÞCmi

rmi
; ð12Þ

in which the powers mi and coefficients Cmi
of the terms contribut-

ing to this sum are determined by the symmetry of the given elec-
tronic state of the molecule and the nature of the atoms to which
the molecule dissociates [25–28], while the ‘damping functions’
Dmi

(r) take account of the weakening of the interaction energies
associated with these simple inverse-power terms due to the over-
lap of the electronic wavefunctions of the interacting atoms [29].
While most previous applications of the MLR potential function
form omitted the Dmi

(r) damping function factors, it was shown in
Ref. [24] that in addition to providing a more realistic physical
description of the long-range potential tail, their introduction im-
proves the extrapolation behavior of the repulsive short-range po-
tential wall, and when they are included, fewer parameters are
required to achieve a given quality of fit to experimental data. In
either case, the structure of Eq. (11) means that at large distances
where uLRðrÞ � uLRðrÞ2=ð4DeÞ, the long-range behavior of VMLR can
be controlled easily by appropriately defining uLR(r).

Following Ref. [24], the present work uses a modification of the
Douketis damping function form of [30]:
DDSðsÞ
mi
ðrÞ ¼ 1� e

� bds ðsÞ�qr
mi

þcds ðsÞ�ðqrÞ2
mi

� 	 !miþs

; ð13Þ

with s = �1, where bds(s) and cds(s) are system-independent param-
eters with bds(�1) = 3.30 and cds(�1) = 0.423. For interacting atoms

A and B, q � qAB = 2qAqB/(qA + qB), in which qA ¼ IA
p=IH

p

� 	2=3
is de-

fined in terms of the ratio of the ionization potential of atom A

IA
p

� 	
to that of an H atom IH

p

� 	
. Inclusion of these (s = �1) damping

functions means that at very short distances: VMLR(r) / 1/r2 [24].
Comparisons with ab initio results for illustrative chemical and
Van der Waals interactions showed that this type of damping func-
tion yielded quite realistic MLR short-range extrapolation behavior
[24], so this Dmi

ðrÞ form is adopted here.
In order to ensure that b(r) in Eq. (8) satisfies Eq. (10), it is cus-

tomary to write it as the constrained polynomial:

bðrÞ ¼ bq
pðrÞ � yref

p ðrÞb1 þ ð1� yref
p ðrÞÞ

XN

i¼0

bi � ðy ref
q ðrÞÞ

i: ð14Þ

This function is expressed in terms of yref
p ðrÞ and yref

q ðrÞ, which are
similar to yeq

p ðrÞ, but are defined with respect to a different expan-
sion center (rref) and involve two different powers, p and q (the rea-
sons for this structure are discussed in Ref. [10]):

yref
p ðrÞ �

rp � rp
ref

rp þ rp
ref

and yref
q ðrÞ �

rq � rq
ref

rq þ rq
ref

: ð15Þ

The asymptotic long-range behavior of the exponential term in
Eq. (8) gives rise to additional inverse-power contributions to the
long-range potential of Eq. (11), with the leading term being pro-
portional to 1=rm1þp (see Supplementary material for the explicit
asymptotic long-range form of the exponential term). This means
that the power p must be greater than (mlast �m1) if the long-range
behavior of Eq. (12) is to be maintained. There is no analogous for-
mal constraint on the value of q; however, experience suggests that
its value should lie in the range 2 [ q 6 p [10,24,31]. In early work
with this potential function form, the radial variables in Eq. (14)
were both defined as yeq

p ðrÞ of Eq. (9) (i.e., rref = re and q = p) [32–
35]. However, it has since been shown that setting rref – re and/or
q < p can significantly reduce the number of bi parameters required
to describe a given data set accurately, and yields more stable func-
tions whose bi parameters have magnitudes commensurate with
the ranges of the dependent and independent variables being rep-
resented [10,24,31].1

A second consideration associated with the use of the damping
functions of Eq. (13) is their effect on the shape of the short-range
repulsive potential wall of an MLR potential. As was pointed out in
Ref. [24], the fact that the radial variables yref

p=qðrÞ ! �1 as r ? 0
means that at very small distances: VMLR(r) / (uLR(r))2. If damping
functions are neglected (i.e., if Eq. (12) did not include the Dmi

(r)
functions), then the limiting short-range behavior of the potential
energy function would be VMLRðrÞ / 1=r2mlast . For a typical two- or
three-term uLR(r) function, mlast = 8 or 10, and the resulting 1/r16

or 1/r20 short-range repulsive wall behavior would be unphysically
excessively steep. In the data-sensitive region of the potential well,
this excessive growth rate would be compensated for by the
behavior of the empirically determined function b(r). However,
the unphysical high-order r�16 or r�20 singular behavior would
re-assert itself in the shorter-range extrapolation region.
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In this paper, the label for particular MLR potential function
models is written as MxLRrref

p;q ðNÞ, in which x is the number of dis-
persion energy constants incorporated into uLR(r), while p, q, rref

and N are defined above. The ‘basic’ MLR model described above
is used herein to describe the potential energy function for the
a3Rþu state of Li2. However, some enhancements were required
for treating the 13Rþg state.

2.3. Modified MLR potential for the 13Rþg state of Li2

2.3.1. Incorporating interstate coupling into the MLR model
At a preliminary stage of the present work, the 13Rþg state of Li2

was represented by the ‘basic’ MLR function of Eqs. (8)–(15), in
which uLR(r) consisted of three terms, with mi 2 {3, 6, 8}. This mod-
el was able to provide an excellent fit to both the fluorescence data
for vð13Rþg Þ ¼ 1—7 and the PAS data for vð13Rþg ;

7;7Li2Þ ¼ 62—70
and vð13Rþg ;

6;6Li2Þ ¼ 56—65, whose upper limits both correspond
to binding energies of about 24 cm�1. However, when PAS data
for higher vibrational levels were included in the analysis, the
quality of fit got progressively worse, and the discrepancies could
not easily be removed simply by increasing the order of the poly-
nomial b(r). The reason for this increasing inability of the basic
MLR model to account for levels lying very near dissociation is
that the 13Rþg state of Li2 couples to the two other states near its
dissociation asymptote.

This same type of problem was encountered in a recent study of
the A 1Rþu

� �
� Xð1Rþg Þ system of Li2. In that case the 0þu ðA

1Rþu Þ state
which goes to the Lið2P1=2Þ þ Lið2S1=2Þ asymptote couples to the
0þu ðb3PÞ state which goes to the higher Lið2P3=2Þ þ Lið2S1=2Þ limit
[36,37], and the energies of levels lying near dissociation could
MLR ¼

� 1
3
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2 This can be accomplished using formulas such as Eqs. (33) from Ref. [40]. Such
formulas were first published by Gerolamo Cardano [39], but Scipione del Ferro and
Niccolò Fontana Tartaglia discovered methods to solve cubic equations much earlier
[52].
not be explained properly without taking account of the inter-state
mixing. Fortunately, Aubert-Frécon and co-workers had derived an
analytic description of those coupled states based on the eigen-
values of a 2 � 2 interaction matrix [5,37], and it was shown in
Ref. [10] that an accurate potential for the A1Rþu state could easily
be made using an MLR with uLR(r) defined as their expression for
the lower energy eigenvalue.

Treatment of levels lying near the dissociation limit of the
13Rþg state of Li2 involves a similar problem; while it dissociates
to the Lið2P1=2Þ þ Lið2S1=2Þ limit, it couples to the 1g(1Pg) and
1g(3Pg) states which correlate with the higher Lið2P3=2Þ þ Lið2S1=2Þ
limit [36,37]. Since the Li(2P) spin-orbit splitting is quite small
(0.335338 cm�1[38]), the interstate coupling only becomes impor-
tant for levels lying relatively close to the dissociation limit. Fortu-
nately, Aubert-Frécon and co-workers have studied this case too
[37]. In particular, they presented expressions for the six indepen-
dent elements of the symmetric 3 � 3 matrix that defines the long-
range interaction energies for these three states (see Eqs. (10) of
Ref. [37], or the Supplementary material to this article). Their
matrix elements took into account the first-order resonance-dipole
(1/r3) term, the leading dispersion energy terms, and the exchange
energy. If we neglect the exchange terms, keep only the first two
ðmi 2 f6;8gÞ dispersion energy terms, set the zero of energy at
the 13Rþg state asymptote, make use of the symmetry relation for
m1 = 3,

CR
3 � C

3Rþg
3 ¼ 2C

1Pg
3 ¼ �2C

3Pg
3 ; ð16Þ

and that for m2 = 6,

CP
6 � C

1Pg
6 ¼ C

3Pg
6 ; ð17Þ

and define CR
6;8 � C

3Rþg
6;8 , their 3 � 3 long-range interaction matrix MLR

becomes (see the Supplementary material to this article)
in which DE is the accurately known (positive) spin-orbit splitting
energy of Li(2P) [38]. Note that in contrast with Ref. [37], the present
formulation treats attractive Cm coefficients as positive, rather than
negative quantities. Following the correlation scheme given by
Movre and Pichler [36], the lowest energy eigenvalue of the matrix
(18) defines the long-range tail of the 13Rþg state interaction poten-
tial; see Fig. 2.

Analytic expressions for the three eigenvalues of Eq. (18) were
also reported in Ref. [37]. Those expressions were obtained by
analytically solving for the zeros of the characteristic (cubic)
polynomial for MLR.2 However, we do not recommend using their
analytic expressions (see the discussion about their eigenvalue
expressions in the Supplementary material). Kopp has demonstrated
that when such formulas for the solutions to a cubic equation are
evaluated numerically using double precision floating point arithme-
tic, the results might differ from the true values by more than 106

[40]. Moreover, the least squares fitting procedure used to optimize
the parameters of the potential in order to give the most accurate
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Fig. 3. Illustration of the effect of setting CP
6 ¼ C

1Pg
8 ¼ C

3Pg
8 ¼ 0 in Eq. (18).

Fig. 4. Comparison of four representations of the long-range potential for the 13Rþg
state of Li2, with energies in cm�1 and lengths in Å.

3 For interpretation of color in Figs. 1–9, the reader is referred to the web version of
this article.

4 Similarly, leaving CP
6;8 at the theoretical values and setting CR

6;8 ¼ 0 has little effect
on the solid curves for the 3Pg and 1Pg states, but the resulting plot for the 13Rþg
state deviates significantly from its corresponding solid and dashed curves in Fig. 3.
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potential of a given form requires derivatives of the potential (and
therefore, by the chain rule, requires derivatives of the lowest energy
eigenvalue of MLR) with respect to all of the fitting parameters. The
symbolic expressions for the derivatives of the lowest eigenvalue
with respect to the fitting parameters required by the least-squares
fitting procedure are inconveniently complicated. Because of these
problems, in the present work the interaction matrix is diagonalized
numerically (using the Jacobi diagonalization algorithm [40,41]
which diagonalizes the matrix to practically machine precision),
and the derivatives of the eigenvalues with respect to each fitting
parameter p were computed using the discrete version of the
Hellmann–Feynman theorem:

@ki

@p
¼ /ki

@MLR

@p

���� ����/ki


 �
; ð19Þ

in which ki is the appropriate eigenvalue of the MLR matrix, and /ki

is the corresponding eigenvector. A more detailed discussion that
compares our numerical eigenvalues with the analytic expressions
of Ref. [38] can be found in the Supplementary material.

2.3.2. Simplifying the treatment of interstate coupling for Li2ð13Rþg Þ
The treatment of the long-range behavior of the A1Rþu state of

Li2 presented in Ref. [10] was precisely analogous to that used here
for the 13Rþg state, except that while that case involved a 2 � 2 ma-
trix whose eigenvalues were determined analytically, the present
case involves the 3 � 3 matrix of Eq. (18) whose eigenvalues are
calculated numerically. In the treatment of the A1Rþu state, it was
shown that the CP

6 =r6 and CP
8 =r8 terms had virtually no effect on

the lower energy (R state) eigenvalue of the 2 � 2 long-range
interstate coupling matrix. This led us to consider making the same
simplification here.

Following the approach of Ref. [10], we compared the values of
the lowest energy eigenvalue of Eq. (18) obtained when CR

3 and all
CR=P

6 and CR=P
8 coefficients were defined by the theoretical values of

Tang et al. [42], with those obtained after setting CP
6 ¼ C

1Pg
8 ¼

C
3Pg
8 ¼ 0. Over the range r = 2 to 500 Å, the difference between

these two estimates of the lowest eigenvalue was always less than
3 � 10�6 cm�1. Thus, it seems clear that in the present treatment of
the 13Rþg state of Li2, no significant errors will be introduced if con-
tributions involving CP

6 ; C
1Pg
8 and C

3Pg
8 are omitted from Eq. (18). At

the same time, it is important to note that for small internuclear
distances, these CP

6 and CP
8 coefficients cannot be neglected when

using the two higher energy eigenvalues of Eq. (18) to define the
long-range tails of the 3Pg and 1Pg states which couple with the
13Rþg state of interest here. This point is illustrated by Fig. 3, which
compares plots of the three eigenvalues of Eq. (18) obtained using
all of the CR=P
n coefficients of Tang et al. [42] (solid red curves3) with

those obtained from this same matrix when CP
6 ¼ C

1Pg
8 ¼ C

3Pg
8 ¼ 0

(dashed blue curves). It is clear from Fig. 3, that at the smaller dis-
tances where the C6 and C8 terms become important, one cannot
use the above approximation when calculating the eigenvalues of
Eq. (18) associated with the two Pg states.4 This argument for the
justification of this simplification is unaffected by the following
two changes made (in Sections 2.3.3 and 2.3.4), and the Supplemen-
tary material contains tests to demonstrate this.

2.3.3. Implications of the quadratic term in the MLR potential function
form

It was shown in Ref. [10] that contributions from the quadratic
term in Eq. (11) can give rise to spurious changes in the long-range
behavior of the MLR potential function form. In the present case,
the leading terms in the long-range potential for the 13Rþg state
of Li2 correspond to mi 2 {3, 6, 8}. If we temporarily ignore the ef-
fects of damping and interstate coupling in order to write uLR(r)
as a simple inverse-power sum, the presence of the quadratic term
in Eqs. (8) and (11) mean that the effective long-range behavior of
the MLR potential would be

VMLRðrÞ ’ De �
C3

r3 �
C6

r6 �
C8

r8 þ
ðC3Þ2=ð4DeÞ

r6 þ C3C6=ð2DeÞ
r9 þ � � � :

ð20Þ

Thus, if the overall effective long-range behavior is to be defined by
an inverse-power sum governed by the specified C3, C6 and C8 coef-
ficients (and not include the last two terms in Eq. (20)), the defini-
tion of uLR(r) must compensate for the quadratic terms by being
defined as

uLRðrÞ ¼
C3

r3 þ
Cadj

6

r6 þ
C8

r8 þ
Cadj

9

r9 ; ð21Þ

in which Cadj
6 � C6 þ ðC3Þ2=ð4DeÞ and Cadj

9 � C3Cadj
6 =ð2DeÞ.

Since the long-range tail of our 13Rþg state potential also in-
cludes interstate coupling, these expressions for Cadj

6 and Cadj
9

(which were derived analytically for potentials with simpler
long-range tails) need to be tested in order to ascertain that they
do indeed cancel the effect of the spurious last two terms shown



5 This neglect of hyperfine effects is justified by the fact that the binding energy of
the highest observed level vða3Rþu ;

7;7Li2Þ ¼ 10 is more than an order of magnitude
larger than the hyperfine intereaction energy, which is about 0.027 cm�1 [15,38].
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in Eq. (20). Results of a numerical test of this question are
presented in Fig. 4, which displays plots of the quantity
Ceff

3 ðrÞ � r3ðD� uLRðrÞÞ vs. r�3 for three different definitions of
uLR(r). This type of plot illustrates the nature of the long-range
interaction on a reduced scale. If uLR(r) was defined as the simple
inverse-power sum of Eq. (21), as r�3 ? 0 the resulting plot would
approach an intercept of C3 with a limiting slope of Ceff

6 [32]. In the
present case, however, the mixing of three states near the
potential0s dissociation asymptote causes all of the plots in Fig. 4
to drop off sharply for r�3

[ 10�4 Å�3.
As mentioned in Section 2.3.1, the desired long-range behavior

is achieved when uLR(r) is defined simply as the lowest energy
eigenvalue of the matrix of Eq. (18), uLR(r) = �kmin(r). This desired
behavior is defined by the solid black curve in Fig. 4. The dash-
dot-dot red curve in Fig. 4 then shows how the long-range behavior
of the associated MLR potential, which includes the quadratic term
of Eq. (11), deviates from this desired long-range behavior. Next,
the dotted blue curve shows the effect on the long-range MLR
behavior, of replacing CR

6 by the quantity Cadj
6 defined above. It is

immediately clear that this removes most of the discrepancy with
the ‘ideal’ long-range behavior (the solid black curve). Finally, the
dashed green curve shows the effect on the long-range MLR poten-
tial tail, of also including the Cadj

9 =r9 term in (21) in order to cancel
out the spurious r�9 term in Eq. (20). It is clear that use of the
resulting definition

uLRðrÞ ¼ �kmin C3;C
adj
6 ;C8; r

� 	
þ Cadj

9 =r9; ð22Þ

brings the long-range tail of the overall MLR potential function into
practically exact agreement with the desired form. This remains
true whether or not the simplification of the last section (Sec-
tion 2.3.2) is made and whether or not the inclusion of retardation
(described in the next section) is made. The Supplementary mate-
rial contains tests to demonstrate this.

2.3.4. Inclusion of retardation in the model potential for Li2ð13Rþg Þ
It has been known for a long time that at the very large dis-

tances, where the C3/r3 term comes to dominate the interaction en-
ergy in this type of system, ‘retardation’ effects due to the finite
speed of light should not be neglected [43,44]. It was shown by
Meath [44] that the effect of retardation on an s/p resonance-dipole
interaction can be accounted for by multiplying CR

3 by the function
f R
retðrÞ and CP

3 by the function f P
retðrÞ, where

f R
ret ¼ cos

r
´SP

� �
þ r

´SP

� �
sin

r
´SP

� �
; ð23Þ

f P
ret ¼ f R

ret �
r

´SP

� �2

cos
r

´SP

� �
; ð24Þ

in which ´SP ¼ kSP=2p and kSP is the wavelength of light associated
with the atomic 2S � 2P transition, which for 7Li is implicitly given
in Table 2, and for 6Li is given in the analogous table for 6,6Li2 in
the Supplementary material.

It is a straightforward matter to incorporate this retardation
behavior into the MLR potential function form. In particular, on
setting CP

6 ¼ CP
8 ¼ 0, making use of the symmetry relationships

of Eq. (16) for the CR
3 ; C

1Pg
3 and C

3Pg
3 coefficients, and replacing CR

6

by CR;adj
6 , the long-range interstate coupling matrix for the three

1g states dissociating to yield Lið2PÞ þ Lið2S1=2Þ becomes

Mret
LR ¼

�1
3

CR
3 f R

ret
r3 þ

CR;adj
6
r6 þ

CR
8

r8

� � ffiffi
2
p

3
CR

3 f R
ret

r3 þ
CR;adj

6
r6 þ

CR
8

r8

� �
1ffiffi
6
p CR

3 f P
ret

r3ffiffi
2
p

3
CR

3 f R
ret

r3 þ
CR;adj

6
r6 þ

CR
8

r8

� �
�2

3
CR

3 f R
ret

r3 þ
CR;adj

6
r6 þ

CR
8

r8

� �
þDE 1

2
ffiffi
3
p CR

3 f P
ret

r3

1ffiffi
6
p CR

3 f P
ret

r3
1

2
ffiffi
3
p CR

3 f P
ret

r3 DE

0BBBBBB@

1CCCCCCA:
ð25Þ
Unless stated otherwise, the definition of the long-range tail of the
MLR potential for the 13Rþg used throughout the rest of this study is
therefore given by

uLRðrÞ � �kret
min CR

3 ;C
adj
6 ;CR

8 ; r
� 	

þ Cadj
9 =r9 ð26Þ

in which kret
min CR

3 ; Cadj
6 ; CR

8 ; r
� 	

is the lowest energy eigenvalue of the
interaction energy matrix of Eq. (25).

2.4. Born–Oppenheimer breakdown functions

The radial strength functions in Eqs. (6) and (7) may be written
as polynomials constrained to have specified asymptotic values
using the format of Eq. (14)

eSLi
adðrÞ ¼ yeq

pad
ðrÞuLi

1 þ ð1� yeq
pad
ðrÞÞ

X
i¼0

uLi
i � ðyeq

qad
ðrÞÞi; and ð27Þ

eRLi
naðrÞ ¼ yeq

pna
ðrÞtLi

1 þ ð1� yeq
pna
ðrÞÞ

X
i¼0

tLi
i � ðyeq

qna
ðrÞÞi; ð28Þ

in which uLi
1 and tLi

1 are the values of these functions in the limit
r !1;uLi

0 and tLi
0 define their values at r = re, and the radial variables

are versions of Eq. (9) associated with chosen values of the integers
pad, pna, qad and qna. The discussion of Ref. [22] shows that tA;B

1 ¼ 0:0
for any molecule which dissociates to yield uncharged atoms, so
tLi
1 a3Rþu
� �

¼ tLi
1ð13Rþg Þ ¼ 0:0. In addition, we adopt the Watson con-

vention of setting the parameter tLi
0 ¼ 0:0 for both the a3Rþu and

13Rþg states, since its value cannot be determined from transition-
frequency data alone [19,20,22].

Neglecting hyperfine splittings, the absolute zero of energy is
defined as the energy of ground-state atoms separated at r ?1
[21], so by definition, uLi

1 a3Rþu
� �

¼ 0:0.5 Since the 13Rþg state of Li2
dissociates to one ground-state (2S1/2) and one excited-state (2P1/2)
atom, the value of uLi

1ð13Rþg Þ is then defined in terms of the difference
between the atomic 2P1/2 2S1/2 excitation energies for 6Li and 7Li,
which is [21,38]

dE
6Li
7Lið2P1=2Þ ¼ DE

6Lið2P1=2  2S1=2Þ � DE
7Lið2P1=2  2S1=2Þ

¼ �0:351338 cm�1: ð29Þ

This is the difference between the energy asymptotes of the 13Rþg
states of 6,6Li2 and 7,7Li2, and it defines the asymptotic value of
the adiabatic radial strength function for the 13Rþg state [21]. Since
we select 7,7Li2 as the reference isotopologue, this yields

uLi
1 13Rþg
� 	

¼ dE
6Li
7Lið2P1=2Þ=2 1�Mð7LiÞ

Mð6LiÞ

� �
¼ 1:05574 cm�1: ð30Þ

We now address the choice of powers pad, qad, pna and qna for
defining the radial expansion variables in Eqs. (27) and (28). As
was pointed out in Ref. [21], if the effective adiabatic potential
for the ‘minor’ isotopologue is to have the same limiting long-
range behavior as that for the reference isotopologue, pad must
be greater than or equal to the power of the longest-range term
in the intermolecular potential for that state. Thus, we set
padða3Rþg Þ ¼ 6 and padð13Rþg Þ ¼ 3. Note that these BOB correction
radial strength functions are relatively weak (strength
�1 � 2 cm�1) and slowly varying, and few terms are required to
define them. As a result, there is no need here to introduce an
rref – re extension into the definition of the expansion variables
in Eqs. (27) and (28), and for the sake of simplicity we set
qad a3Rþu
� �

¼ pad a3Rþu
� �

¼ 6 and qadð13Rþg Þ ¼ padð13Rþg Þ ¼ 3.
We are not aware of any theoretical predictions regarding the

limiting long-range behavior of the centrifugal non-adiabatic radial



Table 1
Summary of experimental data used in the present work. A listing of all of the experimental data, and a list of the 13 ‘outliers’ excluded from our analysis is available in the
Supplementary material to this article.

Isotop. Type unc. (cm�1) v(23Pg) vð13Rþg Þ v a3Rþu
� � #Data Source

7,7Li2 13Rþg emission 0.01 – 1–7 0–7 1279 Ref. [12]

23Pg emission 0.005–0.01 1–2 – 0–9 137 Ref. [14]
PAS(13Rþg ) 0.0043–0.00073 – 63–90 – 30 Ref. [16]

PAS a3Rþu
� �

0.0013 – – 10 1 Ref. [15]

6,6Li2 13Rþg emission 0.01 – 1–7 0–7 1276 Ref. [13]

PASð13Rþg Þ 0.00110–0.01067 – 56–84 – 69 Ref. [16]

Overall 1–2 1–90 0–10 2792

6 The PAS data for vð7;7Li2Þ ¼ 62; N ¼ 1; vð6;6Li2Þ ¼ 80; N ¼ 1 and vð6;6Li2Þ ¼
68; N ¼ 2 appear to be outliers, and were omitted from the final analyses. A list of the
10 omitted fluorescence experiment data that appear as outliers is provided with the
complete data set used in our analysis in the Supplementary material.
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strength function eRA=B
na ðrÞ (see Eq. (5)), so we have no basis for

assigning particular values to pna. Moreover, as is true for the anal-
ogous q parameters in Eqs. (14), (27) and (28), the value of qna has
no effect on the limiting long-range behavior of eRA=B

na ðrÞ, so there are
no constraints on its value. At the same time, Fig. 3 of Ref. [22]
shows that use of too small values for these powers can give rise
to physically implausible features in the resulting functions on
the interval between the data region and the asymptote, while
use of too high values tends to require an excessive number of
polynomial coefficients. For simplicity, we therefore chose, for both
electronic states, pna = qna = 3 in fits to models which included non-
zero eRLi

naðrÞ functions.
The difference between the well depths of two Li isotopologues

can be written as the difference between the right hand sides
of DðaÞe � V ðaÞad ðr ¼ 1Þ � V ðaÞad ðr ¼ reÞ, and Dð1Þe � V ð1Þad ðr ¼ 1Þ�
V ð1Þad ðr ¼ reÞ. The resultant expression can then be rearranged and
then rewritten using the denition of DV ðaÞad ðrÞ to give:

dDðaÞe � DðaÞe �Dð1Þe ¼ DV ðaÞad ðr ¼ 1Þ � DV ðaÞad ðr ¼ reÞ: ð31Þ

Since yref
pad
ðreÞ ¼ 0 and yref

pad
ðr !1Þ ¼ 1, the algebraic forms of

Eqs. (31), (6) and (27) mean that the difference between the well
depths of different Li2 isotopologues in a given electronic state is
given by the expression [22]

dDðaÞe ¼ DðaÞe �Dð1Þe ¼
DMðaÞ

Lia

MðaÞ
Lia

þ
DMðaÞ

Lib

MðaÞ
Lib

0@ 1A uLi
1 � uLi

0

� �
: ð32Þ

The analogous shift in the equilibrium distance re is [10]

drðaÞe ¼ rðaÞe � rð1Þe ¼ �
DMðaÞ

Lia

MðaÞ
Lia

þ
DMðaÞ

Lib

MðaÞ
Lib

0@ 1AeS0adðreÞ
�k

; ð33Þ

in which �k is the harmonic force constant at the potential minimum
in units cm�1 Å�2, and

eS 0adðreÞ �
deSad

dr

 !
r¼re

¼ ðu1 � u0Þpad þ u1qad

2re
: ð34Þ

Here, Dð1Þe and rð1Þe are the well depth and equilibrium distance of the
MLR potential for the chosen reference isotopologue (here 7,7Li2),
and are parameters explicitly determined by the DPF analysis. Sim-
ilarly, by Eq. (10) in Ref. [22], the electronic isotope shift will be

d DTðaÞe

n o
¼ DTðaÞe � DTð1Þe

¼
DMðaÞ

Lia

MðaÞ
Lia

þ
DMðaÞ

Lib

MðaÞ
Lib

0@ 1A uLi
0 ð13Rþg Þ � uLi

0 a3Rþu
� �� 	

: ð35Þ

Note that this use of Eqs. (30) and (32) is not valid for the mixed
isotopologue 6,7Li2, as it would cause its potential asymptote to lie
at a fictitious point half way between the 6Li(2P1/2) + 7Li(2S1/2) and
7Li(2P1/2) + 6Li(2S1/2) limits. In our treatment of the analogous situ-
ation for the A1Rþu state of Li2, this problem was addressed by intro-
ducing an ad hoc correction term which caused the potential
function for the mixed isotopologue to go to the correct (lower)
limit [10]. However, as there are currently no 6,7Li2 data for the
13Rþg state it seems superfluous to introduce an analogous term
here, and we merely note that energy levels and other properties
for the 13Rþg state of 6,7Li2 predicted by the present model will be-
come unreliable within 1 � 2 cm�1 of the potential asymptote.

Finally, as was pointed out by McAlexander et al. [45], for the
13Rþg state of Li2, the dominant BOB contribution to the rotationless
potential at large r has the form

DV ðaÞad ðrÞ ’ 2BðaÞðrÞ ¼ 2
�h2

2lar2

 !
; ð36Þ

and since la for isotopic Li2 is relatively small, this behavior must
be considered. Following the approach of Refs. [45,46,10], we have
chosen to treat this term as a separate additive contribution to the
effective interaction potential for each isotopologue, which there-
fore has the form:

V ðaÞad;totðrÞ ¼ VMLRðrÞ þ DV ðaÞad ðrÞ þ 2BðaÞðrÞ: ð37Þ

As was pointed out by Vogt et al. [46], this DVad(r) term is readily
incorporated into the hamiltonian by simply replacing the factor
J(J + 1) in Eq. (3) by (J(J + 1) + 2), and their approach was adopted
here. However, this means that the overall 13Rþg state well depth

and equilibrium distance are actually Dtot
e ð13Rþg Þ ¼ DðaÞe � 2BðaÞðreÞ

and rtot
e ð13Rþg Þ ¼ rðaÞe þ 4BðaÞðreÞ=ð�kreÞ, where DðaÞe and rðaÞe are defined

by Eqs. (32) and (33), and Dð1Þe and rð1Þe are the (fitted) reference-iso-
topologue MLR parameters for that state.
3. Potentials for the a3þ
u and 13þ

g states of Li2

3.1. Data set and methodology

An overview of the experimental data used in this work is pre-
sented in Table 1. Most of the data (2555 out of 2792 observations),
came from fluorescence experiments performed by Martin et al.
[12] and Linton et al. [13]. That data set, which extended up to
v = 7 for both the a3Rþu state and the 13Rþg state, was enlarged by
the inclusion of 137 23Pg � a3Rþu

� �
transitions of 7,7Li2 taken from

the study of Ref. [14], which extended the a3Rþu vibrational range to
v = 9. Finally, information about levels lying very near dissociation
was provided by the one available PAS binding energy measure-
ment for the v = 10 level of the a3Rþu state [15], and 99 PAS data
for very high levels of the 13Rþg state [16]6; hyperfine structure
was not resolved for the former, while the latter were reported rel-
ative to the hyperfine centre of gravity. Throughout this study, the



Table 2
Parameters defining the recommended MLR potentials and BOB correction functions
for the a3Rþu and 13Rþg states of Li2 obtained using 7,7Li2 as the reference isotopologue.
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upper levels of all transitions originating in the 23Pg state were
represented by independent fitted term values. A listing of the
experimental data used in the present analysis is included as Supple-
mentary material.

All of the DPF data analysis fits described herein were per-
formed using the program DPotFit, which is freely available (with
a manual) online [17]. The initial trial values of the parameters bi

required for those fits were generated by applying the program
betaFIT (also available online) [18] to sets of turning points ob-
tained from preliminary versions of the analysis.

3.2. Model for Li2 a3Rþu
� �

The a3Rþu state of Li2 dissociates to yield two S-state atoms, and
ignoring hyperfine effects, there is no noteworthy interstate cou-
pling. The theory of intermolecular forces therefore tells us that
the leading contributions to the long-range intermolecular poten-
tial should consist of terms associated with inverse powers
mi 2 {6, 8, 10}. The present analysis therefore represented the po-
tential energy for this species by an MLR potential incorporating
the long-range tail function

ua3Rþu
LR ðrÞ ¼ D6ðrÞ

C6

r6 þ D8ðrÞ
C8

r8 þ D10ðrÞ
C10

r10 ; ð38Þ

in which Dmi
(r) are the modified Douketis-type damping functions

of Eq. (13), with s = �1 and q = 0.54 [24], and the dispersion energy
coefficients for this state were fixed at the values reported by Tang
et al. [42].

In the initial work to determine an optimum model for this
state, the PAS data for the 13Rþg state were ignored and all of the
observed levels of both the 13Rþg and 23Pg states were represented
by independent term values, so only a single potential energy func-
tion was involved in the analysis. Fits were then performed to a
wide variety of models corresponding to different choices for the
order N of the polynomial in Eq. (14), and for the power q and
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Fig. 5. Determination of the optimum model for the a3Rþu state of Li2. All energies
are in cm�1.
the reference distance rref of Eq. (15). As was pointed out in Sec-
tion 2.2, the power p must be larger than the difference between
the largest and smallest powers of the terms contributing to Eq.
(38), so it was fixed as p = 5.

Fig. 5 summarizes results obtained for six families of potential
function models of this type. In general we expect that for reason-
able values of q (say, 2 [ q 6 p) and rref (say, re [ rref [ 2re), a good
fit ðdd K 1Þ will always be achieved when the polynomial order N
becomes sufficiently large. In the lower panel of Fig. 5, this behav-
ior is seen in the convergence of the four families of solid triangular
points that correspond to models with q = 3 as N increases from
two to five. The results for N = 3 with q = 2 and 4 (open square
and round points, respectively) show that the optimum value of rref

(i.e., the one which gives the lowest dd) will depend on q, but con-
vergence to the same limiting quality-of-fit dd. The upper panel of
Fig. 5 shows the fitted values of De for the various models consid-
ered in the lower panel. Those results show that the fitted value of
De may vary considerably from one model to another, but at the rref

value where dd approaches its minimum value, all of the models
with decent qualities of fit converge to essentially the same value.

All of the fits that are summarized by Fig. 5 used all of the 2692
‘optical’ data listed in Table 1 for the two isotopologues 7,7Li2 and
6,6Li2, plus the one PAS datum which had been reported for the
a3Rþu state, while the 395 term values of the observed levels of
the 13Rþg state and 20 term values for the 23Pg state were treated
as free parameters. As might be expected when dealing with light
atoms such as Li, BOB effects are not negligible in this system. In
particular, it was found that allowing for one non-zero term uLi

0

in the expression for the ‘adiabatic’ correction radial strength func-
tion of Eq. (27) reduced the value of dd by 2.4%; however, freeing a
second coefficient (uLi

1 ) only reduced dd by an additional 0.08%, and
Parameters in square brackets were held fixed in the fit, while numbers in round
brackets are 95% confidence limit uncertainties in the last digits shown. The
analysis used the 7Li 2P1/2 2S1/2 excitation energy of 1

kSP
¼ 14903:648130 cm�1 and

2P3/2 2P1/2 spin-orbit splitting energy of 0.335338 cm�1 from Ref. [38]. Units of
length and energy are Å and cm�1; the polynomial coefficients bi are dimensionless,
while the parameters ui defining the ‘adiabatic’ BOB strength function of Eq. (27) have
units cm�1.

a3Rþu 13Rþg

De 333.758(7) 7093.44(3)
re 4.17005(3) 3.06514(9)
C6 [6.7185 � 106]a C3 3.57557(78) � 105

C8 [1.12629 � 108]a
CR

6
[1.00054 � 107]a

C10 [2.78683 � 109]a
CR

8
[3.69953 � 108]a

qLi [0.54] [1]b

{p,q} {5, 3} {6, 3}
rref [8.0] [3.6]
b0 �0.51608 �1.6373863
b1 �0.09782 0.29197
b2 0.1137 �0.55544
b3 �0.0248 �0.2794
b4 – �1.5993
b5 – �0.673
b6 – �1.23
b7 – �1.29
b8 – 0.5
b9 – 2.6
{pad, qad} {6, 6} {3, 3}
u0 0.059 (11) 1.367(7)
u1 – 2.7 (4)
u2 – �1.3(5)
u3 – �1.8(4)
u1 [0.0] [1.055740]

a From Ref. [42].
b As explained at the end of the first paragraph of Section 3.3, setting q =1 in

(13) effectively means that damping functions are not used.
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7 Although they were free parameters in the two-state fit, the resulting value of re

was unchanged (to 6 decimal places), that of De changed by only 0.001 cm�1, and the
largest change in a bi coefficient was by 1.6%. Please see the Supplementary material
for the full details.
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the resulting value of uLi
1 had an uncertainty of greater than 100%.

Similarly, allowing one centrifugal BOB parameter tLi
1 to vary led to

reductions in dd of less that 0.05%. As a result, the model actually
used to obtain the results summarized in Fig. 5 included only the
one free BOB parameter uLi

0 .
All else being equal, the ‘best’ model for a given system is the

one which achieves a good quality of fit (lowest dd) with the small-
est number of free parameters and has no unphysical behaviour in
the extrapolation regions. When more than that minimum number
of parameters are used, the additional degrees of freedom in
parameter space will not be strongly constrained by the data,
and the possibility of problems in the extrapolation regions tends
to increase. On these bases we choose the M3LR8:0

5;3ð3Þmodel corre-
sponding to the solid black triangle points at rref = 8.0 Å on Fig. 5 as
our preferred model, whose quality of fit as defined by Eq. (2) is
dd ¼ 0:7069. The analysis described above led to our estimate of
optimal values for p, q, rref and N for the a3Rþu state potential, and
our estimate of an optimal number of terms for the BOB correction
functions (27) and (28). These values were then used in the global
two-state potential fit (discussed in Section 3.3), which simulta-
neously determined potential energy functions for both the a3Rþu
state and the 13Rþg state, with all other a3Rþu state parameters reop-
timized, and all 13Rþg state parameters optimized.

A final point here concerns the extrapolation properties of the
MLR potential function form. In the initial stages of this study, only
the optical 13Rþg � a3Rþu data which spanned vibrational levels
v a3Rþu
� �

¼ 0—7 were considered in the analysis. The highest of
these a3Rþu state levels is bound by about 26 cm�1 (for the refer-
ence isotopologue 7,7Li2). Nonetheless, our MLR potential obtained
from that analysis (chosen based on the criteria mentioned in the
first sentence of the last paragraph), was a function whose well
depth (for the reference isotopologue) of De ¼ 333:761ð13Þ cm�1

is very close to the value 333.759(7) cm�1 yielded by the analysis
of the full a3Rþu state data set (see Table 2). Similarly, the
v a3Rþu
� �

¼ 10 binding energy predicted by that potential (which
was calculated based only on information from v a3Rþu

� �
¼ 0—7

� �
was 0.4168 cm�1, which is remarkably close to the measured PAS
value [15] of 0.4160(±0.0013) cm�1. Finding a discrepancy of only
0.003 cm�1 in the estimate of De and an error of only
0.0008 cm�1 in the predicted binding energy of the v a3Rþu

� �
¼ 10

level over an extrapolation distance of about 25 cm�1 demon-
strates quite good extrapolation behavior. Thus, a DPF analysis
using an MLR potential with a good multi-term theoretical uLR(r)
seems to be capable of yielding quite reliable extrapolations to pre-
dict the dissociation energy, the binding energy of the highest ob-
served level, and likely also the number and energies of
unobserved higher levels.

3.3. Model for Li2ð13Rþg Þ and results of the two-state potential fit
analysis

Following the discussion of Section 2.3, the potential energy
function for the 13Rþg state of Li2 was represented by an MLR po-
tential whose long-range tail was defined by uLR(r) of Eq. (26). As
usual, fits were performed using models corresponding to a variety
of values of the exponent polynomial order N, of the reference dis-
tance rref of Eq. (15), and of the power q. Since the inverse-power
terms contributing to uLR(r) have powers mi 2 {3, 6, 8}, the power
p defining the radial variables yeq

p ðrÞ and yref
p ðrÞ of Eqs. (9) and

(15) was fixed at p = 6 (which satisfies the requirement that it
has to be larger than mlast �m1 = 8 � 3), and while CR

6 and CR
8 were

held fixed at the theoretical values of Tang et al. [42], CR
3 was trea-

ted as a free parameter. All of these fits treated the full range of
data listed in Table 1 for the 13Rþg � a3Rþu system, and while the po-
tential for the a3Rþu state was represented by the M3LR8:0

5;3ð3Þmodel
described in Section 3.2, its parameters were also free variables in
these fits.7 Because of the added intricacy arising from the interstate
coupling near the dissociation asymptote, damping functions were
omitted from the current model for this state, although in principle
they could have been added for a more physically realistic inner po-
tential wall. For this state’s potential, omitting damping functions
means that all Dmi

ðrÞ factors which ordinarily would be multiplied
by the corresponding Cmi

coefficients as shown in Eq. (12), are set
to 1. This choice for the damping functions Dmi

ðrÞ can be considered
as setting q =1 in (13).

Fig. 6 summarizes results for six families of 13Rþg state PECs:
those for exponent polynomial orders N = 6–9 with q = 3 being rep-
resented by solid points, while those for polynomials orders N = 8–
9 with q = 4 (bottom panel only) are shown as open points. As is
expected, the fact that the 395 observed 13Rþg state level energies
are now constrained to be eigenvalues of a potential function
rather than being free fitting parameters means that the dd values
associated with the best of these fits are somewhat larger than
those for the a3Rþu state analyses summarized in Fig. 5.

As has been the case in other treatments of this type, for any
reasonable values of q and rref the fits converge to essentially the
same optimum dd value when the polynomial order N becomes
sufficiently large [10,24,31,47]. A manual optimization of rref is
undertaken in order to determine a ‘best’ model, which is defined
as one which: (i) gives a good fit to all data, (ii) is defined by the
smallest number of free parameters necessary, and (iii) has no
unphysical behavior in the extrapolation regions. As is usually
the case, models with larger q values (here q = 4) require a high-
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er-order polynomial to achieve a given quality of fit. While not
shown, the dd values for N = 10, q = 4 models with rref = 3.4–3.6
are essentially identical to those for N = 9, q = 3 models with the
same rref (solid round points), but are bigger at larger and smaller
rref values. Models with q = 1 or 2 tended to have inflection points
on the short-range repulsive wall, even for cases with fairly large
rref values.

The results in the two upper panels of Fig. 6 show that the val-
ues of De and CR

3 yielded by fits to models with N = 9, q = 3 vary rel-
atively slowly with rref; and that for rref values which give small dd
values, different models yield similar results. For both of these
properties the analogous results for q = 4 models were much more
strongly model-dependent. We therefore favored the N = 9, q = 3
family of potentials over the others presented in that figure. Since
the fitted CR

3 values and dd values seem to be more consistent for
lower rref values than for higher ones, we also favored low rref val-
ues. Of the potentials that we fitted (see Fig. 6), the one of the fam-
ily N = 6, q = 3 with the smallest rref value that did not have an
inflection in the inner-wall extrapolation region, was the one with
rref = 3.6 Å, hence we chose this case as our recommended model
for this state.

The error bars shown in Fig. 6 are the 95% confidence limit
uncertainties in the corresponding parameters yielded by the
non-linear least-squares fits. Although the binding energies of
the highest observed levels for the 13Rþg state are even smaller than
was the case for the A1Rþu state [16], the uncertainties in the fitted
CR

3 values obtained here ( J 75 cm�1Å3) are an order of magnitude
larger than the analogous uncertainties yielded by the A � X anal-
ysis of Ref. [10]. It is not clear why this should be the case, other
than the fact that the data gap between vð13Rþg Þ ¼ 7 and 63 for
7,7Li2 or between vð13Rþg Þ ¼ 7 and 56 for 6,6Li2, may be expected
to introduce additional uncertainty into the analysis of the limiting
near-dissociation behavior. However, the difference between the
CR

3 value implied by the present analysis and that determined from
Table 3
Properties of the recommended potential energy functions for the a3Rþu and 13Rþg states of
The first three rows correspond to use of 7,7Li2 as the reference isotopologue, while for the l
the last digits shown.

a3Rþu state

fit isot. De re DTe

2-isot 7,7Li2 333.758(7) 4.17005(3) 8144.989(43)
change 0.020(4) �0.000012(3) �0.265(5)

6,6Li2 333.778(8) 4.170038(30) 8144.724(43)
2-isot 6,6Li2 333.778(7) 4.17001(3) 8144.726(33)
the A–X analysis of Ref. [10] (dash–dot–dot line in the uppermost
panel of Fig. 6) is significantly larger than the mutual uncertainties.
Moreover, repeating the present analysis with CR

3 fixed at the value
yielded by the A–X analysis (357 829(±8) cm�1 Å3) increased the
overall value of dd by 0.8%, and increased the dd for the PAS data
by a massive 21%! It may be that a combined 5-state analysis of
the data sets for the two cases will resolve this discrepancy, but
that is beyond the scope of the present work. Thus, our recom-
mended model for the 13Rþg state is an M3LR3:6

6;3ð9Þ potential with
uLR(r) defined by Eq. (26), and with CR

3 determined from the fit.
The quality of this fit as defined by Eq. (2) is dd ¼ 0:7888.

The parameters defining our recommended models for the a3Rþu
and 13Rþg states of Li2 are listed in Table 2. The fact that the uncer-
tainties in the values of De and re are an order of magnitude larger
for the 13Rþg state is to be expected, both because of the gap of
more than 5000 cm�1 for 7 < vð13Rþg Þ < 63, and because the fact
that its lowest observed level is vð13Rþg Þ ¼ 1 means that the
extrapolation to the potential minimum is much longer for this
case. As for the a3Rþu state, obtaining a good combined-isotopo-
logue fit required the introduction of BOB corrections in the effec-
tive adiabatic potential function for the 13Rþg state. As shown in
Table 2, our recommended model includes a polynomial of degree
three for the ‘adiabatic’ correction radial strength function eSLi

adðrÞ
Li2 (energies in cm�1 and lengths in Å), with ‘changes’ calculated using Eqs. (31)–(37).
ast row it was 6,6Li2. The numbers in brackets are 95% confidence limit uncertainties in

13Rþg state

De Dtot
e re rtot

e

7093.44(3) 7092.417(33) 3.06514(9) 3.06524(9)
0.1036(3) �0.067(2) 0.00005(3) 0.000075(1)
7093.54(3) 7092.350(33) 3.06519(9) 3.065315(90)
7093.54(3) 7092.347(33) 3.06520(9) 3.06532(9)
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but no non-adiabatic centrifugal potential BOB correction function
ðeRLi

naðrÞÞ. Increasing the degree of polynomial eSLi
adðrÞ further or

including a non-zero eRLi
naðrÞ yielded no significant improvement

in the quality of fit as defined by Eq. (2), while reducing the degree
of eSLi

adðrÞ by one or two terms increased the dd value of the fit by
1.6% and 3.8%, respectively.
3.4. BOB functions and isotope effects

The radial strength functions defining the effective adiabatic
BOB correction to the potential energy functions for both states
are shown in Fig. 7. Since 7,7Li2 was chosen as the reference isotopo-

logue, Eq. (32) shows that the fact that eSa3Rþu
ad ra3Rþu

e

� 	
�eSa3Rþu

ad ð1Þ ¼ ua3Rþu
0 � ua3Rþu1 ¼ ua3Rþu

0 is positive means that Da3Rþu
e is

(slightly) larger for 6,6Li2 than for 7,7Li2. The upper curve in Fig. 7

shows that the eS13Rþg
ad ðrÞ contribution to the isotopologue depen-

dence of D
13Rþg
e is also positive (and much larger). However, the iso-

topologue dependence of the 2B(a)(r) contribution to the effective
adiabatic potential (see Eq. (37)) makes a negative (�0.171 cm�1)
contribution to the difference Dtotð6;6Þ

e �Dtotð7;7Þ
e for the 13Rþg state,

and turns out to be the dominant BOB correction term.
The results presented in Table 2 were obtained from an analysis

which treated 7,7Li2 as the reference isotopologue, and the first row
of Table 3 presents characteristic properties of the resulting a3Rþu
and 13Rþg potential energy functions for that species. Note that
the values of Dtot

e ð13Rþg Þ and rtot
e ð13Rþg Þwere obtained after combin-

ing the MLR potential with the additive adiabatic correction term
of Eq. (36). The next two rows of this table then show, respectively,
the isotopic changes in, and the resulting values of these quantities
for 6,6Li2, as implied by the BOB correction functions eSadðrÞ and (for
the 13Rþg state) the 2B(a)(r) term (see Eqs. (31)–(36)). Of course it is
equally feasible to perform the overall analysis using 6,6Li2 as the
reference isotopologue, and the last row of Table 3 shows the prop-
erties of that isotopologue obtained in that more direct manner. It
is reassuring to see that within the uncertainties, the results in the
last two rows of this table agree with one another.

Of course it is simpler to work with potential functions that do
not require the addition of separate adiabatic correction functions
DV ðaÞad ðrÞ. Hence, for the convenience of those interested primarily
in the minor isotopologue 6,6Li2, a version of Table 2 for the case
in which this species was used as the reference isotopologue is in-
cluded as Supplementary material.
4. Discussion and conclusions

A combined-isotopologue DPF analysis of 2692 optical data for
the 13Rþg � a3Rþu and 23Pg � a3Rþu band systems of 7,7Li2 and 6,6Li2,
together with 99 PAS data for the 13Rþg state and one for the a3Rþu
state, has yielded analytic potential energy functions for the 13Rþg
and a3Rþu electronic states which (on average) explain all of those
data within the experimental uncertainties ðdd ¼ 0:7888Þ. The
resulting a3Rþu state potential has only 4 empirical shape parameters
ðfbig

i¼3
i¼0Þ and accurately describes data spanning the whole potential

well, including the very highest vibrational level of 7,7Li2 which is
bound by only about 0.4160 cm�1. The resulting scattering lengths
for 7,7Li2 and 6,6Li2 are aSL = �14.759(9) Å and �1906(50) Å, respec-
tively, where the uncertainties were estimated by repeating the
overall analysis with C

a3Rþg
6 increased/decreased by 0.01% from the

recommended values of Tang et al. [42]. This 0.01% is a factor of 3
larger than the C6 uncertainty reported in Ref. [42]. The uncertainty
in aSL is much larger for 6,6Li2 than for 7,7Li2 simply because all else
being equal, scattering lengths that are very large in magnitude
are much more sensitive to details of the potential energy function.
Listings of band constants (Gv, Bv, Dv, Hv, etc.) calculated from this
potential for all bound levels of the a3Rþu state for all three Li2

isotopologues are included with the Supplementary material.
For the 13Rþg state, the present analysis has provided an

analytic potential energy function that smoothly bridges the gap
of about 5000 cm�1 gap (see Fig. 1) between the vð13Rþg Þ ¼ 1—7
fluorescence measurement domain and the PAS data for
vð13Rþg ;

6;6Li2ÞP 56 and vð13Rþg ;
7;7Li2ÞP 63. To illustrate this

bridging behavior, Fig. 8 plots calculated properties of our recom-
mended potential for 7,7Li2 in the manner suggested by near-disso-
ciation theory (NDT) [47–51]. In particular, NDT predicts that for
vibrational levels lying near the dissociation limit of a potential
whose limiting long-range behavior is defined by an attractive
C3/r3 interaction energy, the 1

6 power of the binding energy
ðD� Ev Þ, the 1

5 power of the vibrational level spacing DGvþ1
2
, and

the 1
4 power of the inertial rotational constant Bv, should all be lin-

ear functions of v, with slopes determined by the value of the C3

coefficient. The solid triangular points in Fig. 8 represent the exper-
imental data, while the open round points are our predictions for
the ‘no-data’ regions. The markers (triangular points and open
round points) will not exactly appear to represent vibrational
levels with a 1:1 correspondence due to some overlaps. The
dash–dot–dot lines in Fig. 8 are the limiting NDT slopes implied
by the fitted CR

3 value of Table 2; as an NDT treatment was the basis
of the analysis reported in Ref. [16], this plot suggests that it is
fortunate that the data available there did not extend past
vð13Rþg ;

7;7Li2Þ ¼ 90. The deviation from the NDT behavior at very
high v reflects the fact that the 3 � 3 interstate coupling reduces
the magnitude of the effective C3 coefficient in the limiting region
by a factor of 1

3 (a discussion regarding the asymptotic form of the
potential is in the Supplementary materials) as one approaches the
limit (see Fig. 4). Calculated band constants for all bound levels of
all three Li2 isotopologues in this state have been placed in the
Supplementary material.

It is noteworthy that predictions generated from a variety of
other MLR potential models (i.e., models defined by different N
or q values) which yield good fits to the data are identical on the
scale of Fig. 8. This model-independent bridging of a data-gap
spanning 73% of the well depth is a remarkable illustration of the
robustness of the MLR potential function form. The ability of this
function to readily incorporate the effect of two-state [10] or
three-state (present work) coupling in the long-range region is a
further demonstration of its capabilities. A FORTRAN subroutine for
generating the recommended potentials has been placed in the
Supplementary material.

One puzzle left by this work is the discrepancy between the va-
lue of CR

3 for interacting Li(2P)+Li(2S) atoms determined in the pres-
ent analysis ð3:57557ð78Þ � 105 cm�1Å

3Þ and those obtained in the
A 1Rþu
� �

state analysis of Ref. [10] ð3:57829ð7Þ � 105 cm�1Å
3Þ or

from the recent theoretical calculations of Tang et al. [42],
ð3:5781089ð7Þ � 105 cm�1Å

3Þ. While small on an absolute scale,
this 0.076% discrepancy is much larger than the estimated uncer-
tainties, and repeating our overall analysis with CR

3 fixed at the
Að1Rþu Þ state value from Ref. [10] yielded a distinctly poorer quality
fit, especially for the PAS data. It may be that a combined five-state
analysis of all of the data considered here with those used in the
A–X analysis of Ref. [10] will shed light on this question, but that
will have to await future work.
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