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We report a first-principles prediction of the Raman shifts of parahydrogen (pH2) clusters of sizes
N = 4–19 and 33, based on path integral ground-state simulations with an ab initio potential energy
surface. The Raman shifts are calculated, using perturbation theory, as the average of the difference-
potential energy surface between the potential energy surfaces for vibrationally excited and ground-
state parahydrogen monomers. The radial distribution of the clusters is used as a weight function in
this average. Very good overall agreement with experiment [G. Tejeda, J. M. Fernández, S. Montero,
D. Blume, and J. P. Toennies, Phys. Rev. Lett. 92, 223401 (2004)] is achieved for p(H2)2−8,13,33.
A number of different pair potentials are employed for the calculation of the radial distribution
functions. We find that the Raman shifts are sensitive to slight variations in the radial distribution
functions. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4885275]

I. INTRODUCTION

The study of pH2 clusters is of considerable interest be-
cause of their potential superfluid properties. pH2 is a molec-
ular boson with low mass and weak intermolecular forces
and thus may be expected to display superfluid properties
under appropriate conditions, particularly when in the form
of nano-clusters that retain liquid-like properties below the
pH2 triple point.1 The results of early experiments implied
the presence of superfluidity in such clusters embedded in
helium nanodroplets based on rovibrational Q branch behav-
ior of dopants.2–5 The first direct measurement of the su-
perfluid fraction was only recently conducted through com-
parisons of the results of Path Integral Monte Carlo (PIMC)
simulations with experimental data involving pH2 clusters of
varying sizes, probed using infrared spectroscopy of a CO2
chromophore.6 Recent advances in PIMC techniques have al-
lowed the accurate simulation of more complex asymmetric
top dopants40 and have been applied to the case of pH2 clus-
ters doped with H2O7 and SO2

8 molecules. Highly accurate
Potential Energy Surfaces (PESs) that describe the molecu-
lar interactions are required for simulations of this type. The
quality of a PES can be tested by using it to predict the vi-
brational band origin shift of a chromophore when perturbed
by surrounding “solvent” cluster molecules. Li et al. demon-
strated, for instance, that it is possible to obtain accurate shifts
from theory and simulation for the case of CO2 in He and pH2
clusters of various sizes.6, 9

An interesting question remains regarding what will oc-
cur if the chromophore is another pH2, i.e., if we have a
pure pH2 cluster. Several PIMC studies have been carried
out for pure pH2 clusters at finite temperature10–14 and in
the ground state using the Path Integral Ground-State (PIGS)
formulation,15–17 and Diffusion Monte Carlo (DMC)18 to elu-
cidate their structural, energetic, and superfluid nature. A
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summary of these studies has been presented in a review
by Navarro and Guardiola.19 However, some of these studies
have shown that the choice of interaction potential used in a
simulation affects the details of predicted properties.15, 16, 20, 21

This reinforces the need to test PESs via comparison of calcu-
lated band-origin shifts with experiment. Figure 1 depicts the
nature of the band origin shift for the fundamental vibrational
energy transition of a pH2 chromophore in a pH2 cluster. Care
must be taken in modelling these systems because the pH2
chromophore is indistinguishable from the solvent pH2, and
bosonic exchange interactions will result in the delocalization
of vibrational excitations.

Two recent developments stimulated this line of inquiry.
Tejeda et al. overcame difficulties in studying liquid pure pH2
clusters by using cryogenic free-jet expansions to produce
clusters of varying sizes resolved in space and time, thereby
allowing their clear observation with Raman spectroscopy.22

They also developed an empirical 1D Lennard-Jones model
to fit their data that represents the difference between the
PESs for the ground and the first vibrationally excited state of
the chromophore. That model predicts vibrational band-origin
shifts quite well when perturbatively combined with DMC
calculated radial distribution functions of the pH2 clusters.
In independent work,23 Hinde constructed a six-dimensional
ab initio PES for the pair interaction between H2 and used
it to calculate infrared and Raman transition energies within
(H2)2, showing good agreement with the experiments.22

In the present paper, the 6D Hinde PES23 is used to obtain
a reduced-dimension set of 1D pH2 dimer PESs by solving a
rovibrational Hamiltonian of the pH2 monomers.24 The dif-
ference between the PES in which one quantum of vibrational
excitation is distributed amongst the monomers, and the one
in which both pH2 monomers are in their vibrational ground
states is obtained. This difference-PES is then used to pre-
dict vibrational band origin shifts in many-body pH2 clusters
from first-principles, by averaging this difference-potential
weighted by the radial distribution functions for various
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FIG. 1. Schematic of the band origin shift of a “para-H2” chromophore in a
para-H2 cluster.

cluster sizes. The results are tested against the experimental
observations of Tejeda et al.22 and predictions generated from
their empirical difference-PES. The remainder of this paper is
organized as follows: Theoretical and methodological details
are introduced in Sec. II, results are presented and discussed
in Sec. III, and we close with concluding remarks in Sec. IV.

II. THEORY AND METHODS

Vibrational band-origin shifts are defined as the differ-
ence between the vibrational transition energy of the free
chromophore molecule and that of the chromophore molecule
in the cluster. This can also be described as the difference be-
tween the changes in the upper, vt = 1, and lower, vt = 0, vi-
brational energies when the free chromophore is introduced
into the cluster. For the fundamental vibrational transition of
a chromophore in a cluster size of N, this may be written as

�ν
[N]
0 = �E

[N]
cluster − �Efree = E

[N]
vt=1

− E
[N]
vt=0

, (1)

in which �Efree is the vibrational spacing of a free molecule,
�E

[N]
cluster is that spacing when the molecule is in a clus-

ter of N pH2 molecules, and E
[N]
vt

is the energy of the sys-
tem expressed relative to the dissociation limit for N pH2
molecules when the total number of vibrational quanta of the
pH2 monomers is either vt = 1 or 0.

Direct calculation of these energies or energy shifts via
simulation poses a challenge. Conventionally, two simula-
tions per cluster size would be undertaken, one with the chro-
mophore in the ground vibrational state and the other with
the chromophore in first vibrationally excited state. The to-
tal energies of the simulated clusters will eventually converge
to the statistical ensemble average values and their difference
relative to the free chromophore in either state will give the
vibrational band origin shift. However, a PIMC study of CO2
in He clusters found very slow convergence of the statisti-
cal errors when increasing the number of simulation steps.9

Furthermore, in this case of pure pH2 clusters, an individual
molecule should not be singled out and specified as the chro-
mophore in different excitation states during simulation, due

to the presence of exchange interactions. Fortunately, a per-
turbative approach exists to predict the shifts that converges
faster by making direct use of the difference between the PESs
of the ground and first vibrationally excited states of the chro-
mophore while performing a simulation of just the ground vi-
brational state of the clusters.9, 22

We begin by noting that the Hamiltonian for the vt = 1,
the vibrational state of the cluster is nearly identical to that in
the vt = 0 state, except for the small difference in their poten-
tial energies. Here “t” indicates the total quanta of vibrational
excitation among the cluster molecules, considering that the
excitation can be diffuse due to exchange. Note that if clus-
ters have a more rigid structure,16 they could potentially be
trapped in a metastable state that would prevent the vibra-
tional excitation to be delocalized across the whole cluster.
We have not investigated this effect here and therefore assume
that the state of the cluster is totally symmetric upon identi-
cal particle permutations. The excited state Hamiltonian can
therefore be defined approximately as

Ĥvt=1 ≈ Ĥvt=0 + �V̂ [N] , (2)

in which �V̂ [N] ≡ V̂
[N]
vt=1 − V̂

[N]
vt=0 is the difference between the

total potential energy functions of clusters of size N when one
chromophore is in its ground or its first excited state, in which
N includes the chromophore in the count. First-order pertur-
bation theory then gives the vibrational frequency shift as

�ν
[N]
0 = 〈

�
[N]
0

∣∣�V̂ [N]
∣∣�[N]

0

〉
, (3)

in which |�0(R)|2 is the probability in one dimension of find-
ing a solvent pH2 molecule at a radial distance R from the
chromophore, given by the radial distribution function of the
cluster, and �V̂ [N] is given by the addition of pairwise evalua-
tions of the difference-potential for each pH2 at each position.
With this knowledge, Eq. (3) becomes

�ν
[N]
0 = (N − 1)

∫ ∞

0
�V 1D (R) ρ[N] (R) dR, (4)

in which the scaling prefactor of (N − 1) accounts for the
normalization of the radial distribution function ρ[N](R), and
�V 1D is the difference-PES reduced to one dimension. Note
that the Jacobian factor of R2 is absorbed in our definition of
the radial distribution function.

Tejeda et al. obtained an empirical Lennard-Jones 1D
difference-PES for pure pH2 clusters of the form �V1D

emp(R)
= αR−12 + βR−6, with the parameters α and β being deter-
mined by fitting their simulated shifts to their Raman spec-
troscopic data for the frequency shifts, using a weight distri-
bution function ρ[N](R) obtained from DMC calculations.22

Generation of higher dimensional distribution functions is
computationally prohibitive, necessitating the formulation of
reduced 1D PESs to accompany the radial distribution func-
tions.

Hinde’s 6D PES must, therefore, first be reduced to ef-
fective 1-D potentials for the vt = 0 and vt = 1 vibrational
states. For our ab initio study, Fig. 2 shows the degrees of free-
dom expressed in Jacobi coordinates for an interacting pair of
pH2. Those are the coordinates used to represent the 6D PES,
V6D(R, r1, r2, θ1, θ2, φ). In order to obtain a 1D PES, we use
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FIG. 2. Schematic of PES reduction.24

the Adiabatic Hindered Rotor (AHR) approach established
by Li et al., who employed it for calculating vibrational fre-
quency shifts for CO2 in pH2 clusters.6, 24, 25 It was shown that
the AHR approach preserves some rotational details of the in-
teracting system that a simple spherical average does not.24, 26

In the AHR approach a five-dimensional intermolecular rovi-
brational Hamiltonian is diagonalized for a set of fixed R val-
ues and the locus of lowest eigenvalues define the reduced 1D
PES. In the space fixed frame, the Hamiltonian for the (H2)2
dimer is

Ĥ AHR(R) = ĥrovib
1 (r1) + ĥrovib

2 (r2) + V 6D(R, r1, r2, θ1, θ2, φ),
(5)

where ĥrovib
i is the kinetic rovibrational Hamiltonian operator

of the ith H2 monomer molecule. However, we directly incor-
porate pH2 monomer rovibrational kinetic energies that were
precomputed by Ref. 27 instead of specifying our own ĥrovib

i .
The pH2 monomer rovibrational radial wavefunctions

of Ref. 27 (ψ
j
i

v
i
(ri)Yj

i
m

i
(θi, φi) = 〈ri |viji〉〈θi |jimi〉 e

im
i
φ
i√

2π
) are

used as primitive basis functions for constructing the Hamilto-
nian matrix. For the pH2 molecule, only even rotational states
(j = 0, 2, 4) are allowed due to the singlet nature of the nu-
clear spin wavefunction. Moreover, the total wavefunction of
the dimer must be symmetric upon the exchange of the two
pH2 bosonic monomers. These symmetry requirements will
impose restrictions on the nature of the allowed physical ba-
sis states. Furthermore, we represent our basis in terms of
φ = φ1 − φ2, since the potential only depends on the rela-
tive φ. Additionally, we wish to base our 1D AHR potential
on the ground state of the Hamiltonian, such that we choose
m1 + m2 = 0. Finally, for simplicity we convert to real spheri-
cal harmonic functions. The basis functions for the dimer will
thus have the following form (with m ≡ m1),

〈r1r2θ1θ2φ|vtj1j2m〉

= 1

α
[〈r1|v1j1〉〈θ1|j1m〉〈r2|v2j2〉〈θ2|j2 − m〉

+〈r1|v2j2〉〈θ1|j2−m〉〈r2|v1j1〉〈θ2|j1m〉] cos(mφ),m ≥ 0,

(6)

where the normalization factor α is determined explicitly for
each matrix element since it varies due to the presence or lack
of cross terms when expanding basis functions for certain ma-
trix elements. The Hamiltonian spans only m ≥ 0 because the
symmetry of the basis functions causes cancellation of m < 0

matrix elements. The full derivation of the basis functions is
available in the supplementary material.28 For the vt = 1 case,
we arbitrarily set v1 = 1 and v2 = 0 and the basis function
symmetry accounts for the exchange of the vibrational excita-
tion between the two pH2 monomers. The difference-potential
�V 1D(R) is then simply the difference between the two 1D
PESs obtained after direct diagonalization of the Hamiltonian
matrix for the vt = 0 and vt = 1 cases.

The radial distribution functions of the clusters used in
the perturbative model were generated from Langevin equa-
tion Path Integral Ground State (LePIGS) simulations, which
is a molecular dynamics transmutation of the PIMC PIGS
method and offers more simple formulation, since specialized
Monte Carlo moves are not required.29, 30 In turn, the PIMC
implementation of PIGS is an improvement over DMC meth-
ods because it does not suffer from the population-size bias
issue affecting convergence in the latter.31 Thus, LePIGS has
two-fold advantages over the DMC method. Multiple radial
distributions for each cluster size were generated for com-
parison via LePIGS using a number of different pH2 inter-
action potentials that were described in earlier studies.23, 32–34

The Hinde23 and Szalewicz34 potentials are ab initio potential
functions, while the Silvera-Goldman33 and Buck32 potentials
are empirical functions that were parameterized to conform
to different types of experiments. For cluster sizes of N = 4
and above, a Jastrow-type trial wavefunction15 is used in the
simulations. Unfortunately, smaller clusters were too weakly
bound and dissociated during simulation when this trial wave
function was used. Instead, a direct calculation is used for
N = 2 and a perturbative approach is used for N = 3. The
simulation parameters were optimized using the N = 4 clus-
ter, resulting in a thermodynamic β value of 1.00 K−1, τ of
0.003 K−1, time step of 5 fs, and 0.2 ps skipped between tra-
jectory output to obtain decorrelated data. The simulations
were run for 20 ns.

The output of the simulation trajectories contains a series
of positions where the pH2 are located at each step. These are
converted to raw radial distributions by calculating all pH2-
pH2 pair distances. These raw radial distributions are directly
used to calculate vibrational shifts instead of further process-
ing them into radial distribution functions, g(r), in order to
maintain accuracy (however, the various associated g(r) plots
are available in the supplementary material28). The value of
the difference-PES is then sampled for each of those raw pair
distances and the results averaged. This turns Eq. (4) into

�ν
[N]
0 = 1

n

n∑
i

�V 1D
(
R

[N]
i

)
, (7)

in which n is the number of data points in the simulation tra-
jectory for a particular cluster.

III. RESULTS AND DISCUSSION

Vibrational frequency shifts calculated for clusters using
various radial distributions and two choices of the difference-
potential are presented in Fig. 3. Results in the upper panel
were obtained using the ab initio 1D difference-potential de-
rived from Hinde’s 6D PES23 while those in the lower panel
were generated using the empirical difference-potential of
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FIG. 3. Variation with cluster size of predicted vibrational frequency
shifts calculated using radial distributions generated from different simu-
lation potentials (see key). Upper Panel: Results obtained using ab initio
difference-potential. Lower Panel: Results obtained using empirical
difference-potential.

Ref. 22. In the upper panel, the shifts predicted with ra-
dial distributions obtained from the ab initio Hinde potential
simulations (blue open circles) are in better agreement with
experiment (filled circles) at small cluster sizes (N < 13),
where shifts predicted with radial distributions using the Buck
potential (red open squares) simulations are systemically less
negative than those from the Hinde results and from ex-
periment. The agreement is reversed at large cluster sizes
(N > 13), where shifts obtained from the Hinde radial distri-
butions become more negative compared to the experiment,
while the Buck distribution prediction at N = 33 agrees with
the experimental result. A feature of note present in all se-
ries of shifts is the change in slope of the trend in shifts with
respect to the cluster size at N = 13, a magic number.

The shifts obtained using distributions generated from
four different potentials, together with the experimental val-
ues, are tabulated in Table I. The discrepancy between the
predicted vibrational frequency shifts at small and large clus-
ter sizes from the different radial distributions might be ex-
plained by the origin of the potentials. The Hinde potential is
an accurate ab initio pair potential that should perform better
for small clusters where pair interactions dominate. A sim-
ilar trend in the predicted shifts (not shown in Fig. 3) was
observed for distributions generated using the ab initio Sza-
lewicz potential, in that they are closer to experiment at small
cluster sizes but are more negative for N = 13 and 33. Per-
haps at larger cluster sizes many-body effects become promi-
nent, which these ab initio pure pair potentials do not account
for. This hypothesis may be supported by the fact that pre-
dictions generated using the Silvera-Goldman distributions
that perform better than the ab initio potential distributions at
N = 33, shown in the upper panel of Fig. 3, considering that

TABLE I. �ν0 (cm−1) obtained from radial distributions generated using different potentials and the two �V. Standard errors are ≤0.005 cm−1. Experimental
(Expt.) are provided for comparison purposes.

�ν0, �Vab �ν0, �Vemp

N Expt.22 Hinde Szalewicz Buck S-G Buck DMC22 Hinde Szalewicz Buck S-G

4 −1.251 −1.19 −1.203 −1.118 −1.092 −1.255 −1.197 −1.223 −1.261 −1.180
5 −1.594 −1.517 −1.527 −1.417 −1.385 −1.597 −1.527 −1.566 −1.622 −1.515
6 −1.910 −1.785 −1.800 −1.683 −1.648 −1.904 −1.812 −1.863 −1.923 −1.809
7 −2.136 −2.016 −2.025 −1.878 −1.852 −2.141 −2.045 −2.098 −2.175 −2.043
8 −2.350 −2.206 −2.217 −2.059 −2.028 −2.344 −2.248 −2.315 −2.392 −2.257
9 −2.369 −2.384 −2.219 −2.181 −2.431 −2.493 −2.588 −2.447
10 −2.542 −2.553 −2.367 −2.335 −2.611 −2.674 −2.774 −2.628
11 −2.729 −2.750 −2.545 −2.516 −2.800 −2.887 −2.990 −2.821
12 −2.965 −2.981 −2.752 −2.702 −3.028 −3.109 −3.222 −3.036
13 −3.140 −3.236 −3.276 −3.010 −2.922 −3.330 −3.297 −3.405 −3.507 −3.270
14 −3.279 −3.289 −3.043 −3.002 −3.352 −3.449 −3.573 −3.369
15 −3.334 −3.339 −3.111 −3.064 −3.425 −3.519 −3.657 −3.452
16 −3.404 −3.404 −3.160 −3.122 −3.495 −3.595 −3.736 −3.529
17 −3.453 −3.472 −3.209 −3.175 −3.566 −3.665 −3.802 −3.606
18 −3.532 −3.550 −3.284 −3.250 −3.651 −3.753 −3.899 −3.694
19 −3.668 −3.683 −3.378 −3.333 −3.787 −3.892 −4.024 −3.793
33 −4.390 −4.784 −4.811 −4.423 −4.169 −4.870 −4.941 −5.085 −5.183 −4.794
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the version of the Silvera-Goldman potential used includes
an effective many-body term that was fit to solid state data.33

However, the Buck potential distributions also appears to per-
form well at large cluster sizes even though it has been ob-
tained from a fit to scattering cross section data, and scatter-
ing is an inherently two-body process, meaning the Buck po-
tential is a pure pair potential.32 This suggests that the good
performance of the empirical potential distributions at large
cluster sizes may simply be an accident. In fact, the Raman
spectral peaks for the N = 13 and 33 clusters were unresolved
as reported in Ref. 22 and we can deduce a large error in the
experimentally observed shifts from the broad peak widths,
which might account for some of our discrepancy.

The change in slope of all the sets of predicted shifts at
N = 13 occurs because the first solvation shell of the cluster
is completed at that point. The first solvation shell makes a
larger contribution to the shift compared to outer shells be-
cause the peak of its distribution is situated closer to the min-
imum of the difference-potential, so there is a steeper slope in

the trend of shifts as it gets filled. The lower panel in Fig. 3
presents shifts predicted using the empirical Lennard-Jones
difference-potential reported by Tejeda et al. It also shows
the predicted shifts that they calculated using DMC radial
distributions generated from the Buck potential. Shifts using
the empirical difference-potential are good for the small clus-
ter sizes, as is to be expected, since a fit to observed shifts
was used to define the empirical difference-potential. How-
ever, they all diverge from experiment in the same manner at
large cluster sizes. This may be expected because the empiri-
cal difference-potential was defined by a fit to the experimen-
tal shifts for only N = 2–8 clusters that had resolved Raman
spectral peaks. Interestingly, our LePIGS radial distributions
using the Buck potential do not fully reproduce those shifts
predicted by the earlier DMC distributions, despite using the
same potential. This may be attributed to LePIGS distribu-
tions being less noisy than those of Ref. 22.

A comparison of the empirical 1D difference-potential
from Ref. 22 with the one we determine from the 6D ab

FIG. 4. Upper Panel: Comparison of difference-potentials beside an N = 8 radial distribution function. Lower Panel: The integrand of Eq. (4) for the two
difference-potentials when combined with the N = 8 radial distribution function.
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FIG. 5. Upper Panel: Key ground vibrational state 1-D potentials used in
simulation to generate radial distributions. Lower Panel: Differences of vari-
ous 1-D potentials with the ab initio potential of Hinde.

initio Hinde PES is shown in the upper panel of Fig. 4.
There is a marked difference in the position and depth of
the potentials, despite similar shift predictions for small N,
with the empirical difference-potential having a much deeper
well that is centered at a much shorter distance. Thus, the
difference-potentials probe the radial distributions with differ-
ent emphases, e.g., the region where the empirical difference-
potential is most strongly negative is only sampled by the in-
ner tail of the radial distribution functions as shown in the
upper panel of Fig. 4 for an N = 8 cluster, while the region
where the empirical difference-potential turns positive is not
sampled at all. In contrast, the radial distribution functions
sample both positive and negative domains of the ab initio
difference-potential. Additional insight into the reasons why
the empirical and ab initio difference-potentials give similar
predictions of shifts for small clusters is given by the lower
panel of Fig. 4. It depicts plots of the integrand of Eq. (4) for
the two difference-potentials and the N = 8 distribution. The
shapes of the empirical and ab initio integrand curves are dif-
ferent due to the wells and repulsive walls of the difference-
potentials matching up with different portions of the radial
distribution function, however the net area under the curves
representing the shifts is similar. The ab initio difference-
potential is clearly the correct one and this result illustrates
the difficulty of determining empirical difference-potentials
using bulk-averaging.

A comparison of the four 1D potentials used to generate
the radial distributions is presented in Fig. 5. The top panel
compares a plot of the 1D vt = 0 potential we generated from
the 6D ab initio Hinde PES with the empirical Buck poten-
tial. The bottom panel shows plots of the difference between

TABLE II. Direct calculation of shift for pH2 dimer.

Method �ν0 (cm−1)

Observed −0.400
Tejeda et al.: �Vemp(R)22 −0.417

Hinde: direct ab initio23 −0.405
Our Work: �Vab(R) −0.399

the Hinde potential and other 1D potentials used to generate
radial distribution functions, together with a plot of the Hinde
difference-potential �Vab (black solid line). In the well re-
gion of the potentials, the Buck (red dashed line) and Silvera-
Goldman (purple dashed-dotted line) potentials are less at-
tractive than the Hinde potential. This means the pH2 are less
bound to the vicinity of the potential minima, and their radial
distributions can seep further inward or outward. This will re-
sult in a less negative shift for the Buck and Silvera-Goldman
potentials relative to the Hinde potential because there is less
probing of the attractive well of the difference-potential. In
addition, in the region of the repulsive walls the Buck and
Silvera-Goldman potentials are less repulsive than the Hinde
potential, indicating they have gentler slopes. This means the
pH2 particles can approach closer together in those cases and
this will give rise to larger values for the radial distributions at
short distances. In this region the difference-potential is posi-
tive and so will again tend to produce less negative shifts when
combined with the larger radial distributions of the Buck and
Silvera-Goldman cases relative to the Hinde potential case.
The Szalewicz potential (green dotted line) is slightly deeper
than the Hinde potential in the region of the potential well,
meaning the radial distributions are more concentrated at the
potential minimum, and more positive in the later part of the
repulsive wall region, indicating a steeper slope. This leads
to slightly more negative shifts relative to the Hinde potential
case.

Simulations to obtain a dimer or trimer radial distribution
with LePIGs is not possible because the clusters rapidly dis-
sociate. Instead, for the N = 2 dimer the eigenvalue problem
in R was solved using exact diagonalization with a Colbert-
Miller Discrete Variable Representation (DVR) basis35 after
reduction of the Hinde PES for the ground and first vibrational
states, with the resulting energy difference between them giv-
ing the vibrational frequency shift for the dimer. As shown in
Table II, the result is in good agreement experiment and with
the binding energy calculations Hinde carried out himself.

To obtain the shift for the N = 3 trimer, we employed
the usual perturbative approach using the ab initio difference-
potential, with the trimer ground state radial pair density be-
ing obtained from exact diagonalization using the approach
of Refs. 36–38 and 15. The ground state interaction potential
used in the evaluation was either the ground vibrational state
Hinde potential or the Buck potential. The result shown in Ta-
ble III shows good agreement with experiment for the Hinde
potential case.

For comparison purposes, we have also calculated the
vibrational shift based on the spherical averaging of the 6D
Hinde hydrogen potential for the difference potential. Re-
sults are presented in the supplementary material.28 The AHR
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TABLE III. Perturbative calculation of shift for pH2 trimer.

Method �ν0 (cm−1)

Observed −0.822
Tejeda et al.: �Vemp(R)22 −0.821

�Vab(R), empirical Buck V
vt=0 −0.748

�Vab(R), ab initio Hinde V
vt=0 −0.807

results generally agree better with experiments for clusters
with 3 ≤ N ≤ 8. For the dimer (N = 2) the AHR and spher-
ically averaged results are essentially the same within error
bars. The spherically averaged difference potential however
leads to a better agreement with experiment for N = 13, 33.
Future work will focus on a detailed analysis of these differ-
ences.

IV. CONCLUSIONS

In conclusion, we have described the development and
application of ab initio reduced PESs for the prediction of
Raman spectral shifts of pure para-hydrogen clusters. The re-
sults confirm that the 6D Hinde PES is a high quality pair
PES, with its reduced 1D surfaces predicting shifts in good
agreement with experiment for small cluster sizes including
the (pH2)2 dimer. However, for a cluster size of N = 33, the
shift predicted using radial distributions generated from the
ground state reduced Hinde potential was more negative
than the experimental one. In that domain, radial distribu-
tions generated from empirical potentials performed better,
through accident in the case of the Buck potential or possi-
bly by accounting for many-body effects that may become
non-negligible after the first solvation shell in the case of
the Silvera-Goldman potential. By combining radial distri-
butions generated from these empirical potentials and the ab
initio difference-potential, we are able to extend the predic-
tion of shifts to large pH2 cluster sizes that have not yet
been observed, such as those we have shown between N =
13 and 33. If this were done with the empirical Lennard-
Jones difference-potential, those predicted shifts would di-
verge from experiment, as is expected at the large cluster
sizes that it was not parameterized for. However, it is clear
that our ab initio difference-potential is closer to physical re-
ality. Future work will involve the assessment of the impor-
tance of many-body effects that may account for the differ-
ence between our predictions and the result of experiment for
N = 33. In that regard, the work of Hinde39 on three-body ef-
fects on the energy of the H2 trimer will be of interest. One
other possibility worth exploring is an incorrect assignment of
the experimental vibrational shift for N = 33 as suggested in
Ref. 20.
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