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A simple and accurate method is proposed for transforming the Legendre expansion of an atom-diatom
potential about the diatom center of mass into a new Legendre expansion about a shifted (by isotope
substitution) diatom center of mass. It is found that a simple quadrature procedure yields accurate results
throughout the range of intermolecular separation of physical interest, while a previously proposed Taylor
series expansion procedure gives comparable accuracy only for intermolecular separations greater than the
equilibrium separation. Numerical tests of the method are performed for three model atom-plus-rigid
diatom systems H,(HD)-He, HCI(DCI)-Ar, and *CIF(*’CIF)-Kr. Extension of the quadrature
procedure to the transformation of the potential for an atom plus nonrigid diatom is also discussed.

The interaction potential between an atom and a di-
atomic molecule is usually expressed as a Legendre ex-
pansion

V(r,R',8") =, V,(r,R")P,(cost’) , (1)

where the vector R’ joins the position of the diatom cen-
ter of mass (C') to the position of the atom, the diatom
bond vector r points toward the lighter nucleus, and
cost’=R’.T (see Fig. 1). Within the Born-Oppenheimer
approximation, isotopic substitution does not change the
intermolecular potential. However, it causes the center
of mass (c.m.) of the diatom to shift a distance 6 from
C’ to C, as shown in Fig, 1; here 6 is defined to be posi-
tive if the c. m. shifts toward the lighter nucleus. Since
bound state or scattering calculations for the substituted
species are most conveniently carried out using the (R, 6)
coordinates centered at C, the potential must be re-ex-
pressed in the new coordinates. To prevent errors in
the performance of this coordinate transformation from
affecting the calculation of isotope effects, it is essential
that the procedure be as accurate as possible. Providing
a simple and accurate means of performing this trans-
formation is the purpose of this article.

I. COORDINATE TRANSFORMATION FOR ATOM
PLUS RIGID DIATOM

For a rigid diatom the dependence of the potential on
the bond length # of the diatom can be ignored. The
change of coordinates caused by the shift of the diatom
c.m. from C to C' is defined by’

R'=R(1+t%+2tcosp)'/? | (2)

coso’ =(coso +£) /(1+ 1%+ 2t cosp) /2 | (3)
where £=5/R. The intermolecular potential may then be
re-expressed in terms of the new coordinates (R, 9) as

UR,8) =V(R',6") =) U,(R)P,(coss) . (4)
k

Using the orthogonality properties of the Legendre poly-
nomials, the functions U,(R) have been shown to be!
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UR)=( +%)£ d(cos8) P,(cosh)V(R',8") (5a)
=(k+ é)f:o f‘ P,(0) V(R P,(x")dx , (5b)
n=0 v=1

where x=cosf#, %' =cosd’, and R’ and 8’ are given by Egs.
(2) and (3), respectively. Treating { as an expansion pa-
rameter and employing a Taylor series expansion of
V,(R") about £=0, Kreek and Le Roy! obtained analytical
expressions for the U,(R) functions of Eq. (5) in terms

of the functions V,,(R) and their derivatives. Suchexpres-
sions have been used to compute the transformed poten-
tials used in eigenvalue calculations for the vander Waals
complexes HD-Ar'*? and DCl-Ar, *'*

Unfortunately, the explicit formulas for U,(R) pre-
sented in Ref. 1 only included terms up to 0(t*) and were
based on the assumption that the sum in Eq. (1) is trun-
cated after n=4. Moreover, the convergence of the ex-
pansion in powers of ¢ was not tested. Extending these
results to include higher powers of { and more values of
n would involve much complicated algebra. In addition,
the higher derivatives of the V,(R) functions are often
tedious to compute, particularly if the potential is only
available in numerical form,® or if it has discontinuities
in its derivatives.®”’

The present approach is to determine the functions
U,(R) numerically from the exact V(R',0’) by applying a
suitable quadrature formula to the integral in Egs. (5).
Since the parameter ¢ is usually quite small, the vari-
ables R,R’ and x,x" in Egqs. (5) are quite similar. Thus,

FIG, 1.
of the diatom AB and D is the atom.
positions of the center of mass of the isotopically substituted
and unsubstituted diatom, respectively.

The atom-—diatom coordinates. A is thelighter nucleus
C and C’ indicate the
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the integrand in Eq. (5b) is similar to a product of a
slowly varying function of x with two polynomials in x of
orders 2 and n. TFor this type of integral an N-point
Gaussian quadrature, with (B +n)< 2N - 1, should be high-
ly accurate. Of course, Eq. (5a) is applicable evenwhen
V(R', 0’) has not been resolved into a Legendre expan-
sion,

1l. TEST AND ANALYSIS OF THE METHOD FOR
RIGID DIATOMS

To test this procedure a model potential of the form of
Eq. (1) was chosen, except that the dependence of the po-
tential upon 7 has been ignored. The radial potential
strength functions are of the form

V,(R") = ¢,{m, expla,(1- R’ /R;)]
- a(R,/RY} (o, - m,), n=0,1,2 . (6)

Values of the parameters m,, €,, o,, and R, appropriate
to the systems H,-He,® HCl-Ar, ® and ¥*C1F-Ar® are
summarized in Table I. The H,(HD)-He system has a
weakly anisotropic potential with a large isotopic shift of
the diatom c. m., while the 3*C1F(*’CI1F)~Kr system cor-
responds to a strong anisotropy with a small isotopic
shift, and the HCI(DC1)-Ar system is intermediate in
both regards.

Values of the intermolecular potentials U(R, 8) for
HD-He, DCl-Ar, and 3'ClF-Kr were generated for a
range of R at a fixed value of 4, and the results are sum-
marized in Table II. In each case, # was chosen as the

TABLE I. Parameters of the .model potentials
used to test the various transformation pro-

cedures.

Hy—He®  HCl-Ar®  CIF—-Kr®
@, 13,782 14.9 29,
R{(A) 3.365 3.828 3.840
€ (cm™) 9,362 130. 7.0
my 6 [ 6
oy 10.2 8.9
R{(&) 4.128 2.416
€ (cm) oo 56.5 -3.7
my 7 7
a, 14.8344 12.9 8.9
R{(4) 3.614 4,281 4,068
€ (cm™)  0.9544 20.8 930,
my 6 6 6

fFitted to the analytical form of Ref., 8 to repro-
duce €,, R/, and the inner repulsive wall from
0.4 R, <R <Ry; long range behavior does not
reproduce that of Ref. 4,

PReference 9.

‘Reference 9; the sign of €; has been reversed
to conform with the definition of € used in the
present work,
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angle which gives rise to the largest positive shift of the
potential at small R, and it is equal to 0 or 7 depending
on whether the isotopic substitution shifts the c. m. to-
ward the heavier or the lighter nucleus of the diatom.
The atom- diatom separation is expressed as R/R, where
n was chosen so that ¢, is the “well depth” of largest
magnitude. Column 2 of Table II gives the exact values
of the potential obtained for given values of (R, 8) by sub-
stitution of Eqs. {2) and (3) directly into Egs. (6) and (1).
Column 3 shows the differences between these exact po-
tentials and those obtained from Eqgs. (4) and (5) for &
=0-6 employing a nine-point Gaussian quadrature formu-
la to evaluate the integrals, Use of a higher-order (11-
or 13-point) quadrature formula changes these results by
less than 5 parts in 10'°, Thus, the nine-point quadra-
ture results are essentially exact, in that the discrepan-
cies shown in this table are due to neglect of » >6 terms
in Eq. (4).

Columns 4-8 in Table II show the errors in calculated
U(R, 6) values caused by truncation of the expansion for-
mulas of Kreek and Le Roy! after terms of order O{t?),
for j=0-4, respectively. In general, the expansion of a
given U,(R) to O(t’) takes account only of contributions
from functions V,(R) for which |z -k%]|<j. Thus, trunca-
tion of this expansion introduces errors due both to inex-
act representation of the functions U,(R) which are gen-
erated, and to truncation of the Legendre expansion for
U(R, 6) after the term corresponding to kp,y =#max +7,
where #n,,,, indicates the order of the highest Legendre
function appearing in the unshifted potential.

The quantities AU(#°) appearing in column 4 in fact cor-
respond to the error which would be introduced by sim-
ply representing U(R, 9) by the unshifted potential V(R, 0),
and effectively indicate the net effect of the isotopic sub-
stitution on the potential energy function, It is interest-
ing to note that these effects depend at least as much on
the potential strength as on the magnitude of the center-
of-mass displacement [c.f. 8/7=0. 1665 for H,(HD) and
0. 0126 for **CIF(*'CIF)].

It is clear from Table II that for RSR,, the resuits
obtained using the lower order expansions in powers of
t are poor, although they improve at large R, Thus, if
interest is centered only on the long range behavior and
an analytical expression for the shifted potential is de-
sired, even the lower-order expressions of Kreek and
Le Roy' are sufficiently accurate. However, while the
higher-order expansions are superior to the lower-order
ones, the quadrature calculations yield by far the best
agreement with the exact results and often involve only
a relatively modest increase in the fotal computing time
in many applications. Moreover, the quadrature method
is quite easy to apply, can be used to generate arbitrari-
ly high order Legendre terms without reprogramming
and, for the calculation including terms through Uspax (R)
(Pmax=2+j inthe present model), requires only about
three times as much computer time as is required for the
0(t?) calculation, Applications of the Gaussian quadra-
ture procedure to scattering calculations!® and to the
bound states of van der Waals molecules!! are in pro-
gress.
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TABLE II. Exact transformed potentials (column 2) and errors in various approximations to them (column 3-8) for the model

potentials.®
R/R;® U AUG) AU(E) AU AU AU AU
HD-~He 0,40 51125,2 ~2.50 — 20458, 4 —4635,4 -684,3 ~64.5 -1.76
0.60 3175.4 —7.40(-2) —1343.25 —326.52 —54.46 ~6.84 —0.68
=0 0.80 142,55 ~2,83(-3) — 73,06 —19.40 —3.40 -0.44 —4,59(-2)
1,00 —8.799 —1,21(~4) -1.22 ~0.84 -0.18 -2.59(—2) —2,81(-3)
6/r=—-0,1665 1,20 —6.766 —4,44(—6) 0.96 5.20(—2) -3.49(-3) ~1,13(-3) —1.50(-4)
1.40 -2,920 1,15(-7) 0.43 3.60(~2) 2.01(-3) 5.54(—5) —3.16(-6)
1.60 -1.306 9.33(-8) 0.17 1.39(-2) 8.31(-4) 3.94(~5) 1.42(—6)
1.80 —~0.636 3,01(-8) 7.62(-2) 5.50(—3) 3.04(—4) 1.40(~5) 5.57(—7)
2.00 -0,334 9.71(-9) 3.62(-2) 2,36(~3) 1.18(-4) 5.00(~ 6) 1.87(-=7)
DCl-Ar 0,40 897293, ~6.8(-3) —117651. ~8274,6 —413.0 -16.9 —0.63
0.60 39537.5 ~3.77(~4) —5212.08 —351.3 —15.8 —0.54 —1.49(-2)
=1 0.80 1264,6 —2.25(— 5) —211.84 -15,76 -0.74 ~2.53(=2) —6,85(—4)
1,00 - 88.38 -1.47(—6) ~0.85 ~0.44 —2,88(—2) -1,13(-3) —3.24(-5)
6/r=0,0264 1.20 ~42,73 —8.87(~8) 1.98 4.50(-2) 1.89(—4) —2,62(-5) -1,18(-6)
1.40 -15.62 —1.49(-9) 0.61 1.59(—2) 3.14(—4) 4,33(-6) 2.67(~8)
1.60 -7.15 1.39(-9) 0.21 4,30(-3) 7.74(—5) 1.24(—6) 1.66(—8)
1.80 -3.87 5.73(-~10) 9.57(—2) 1.48(-3) 2.01(-5) 2.71(=17) 3.56(—9)
2.00 -2.29 2.00(-10) 5.06(—2) 6.63(—4) 6, 97(—6) 7.03(— 8) 7.47(-10)
S1CIF-Kr 0.40 3.8232(7) 1.74(—2) —5.48(7) — 413335, —21032, —-806.4 —24,8
0.60 89020.5 1.27(-4) ~11764.1 - 867.4 —44,25 -1,71 -5,28(-2)
6=0 0.80 778.98 -2,65(=7) -126.95 -4.30 -0.12 —3.47(-3) —1,04(—4)
1.00 -935.2 -2.89(-7) —0.30 —0.42 —8,68(—3) —9.97(—5) - 8,06(-17)
6/r=~0,0126 1.20 —~642,9 —2.70(—8) 9.59 2.73(-2) ~9.18(—4) -1.72(-5) -1,75(-7)
1.40 -330.9 2.40(-9) 5,78 4,.83(—2) 1.67(—4) —1,20(—6) ~2,49(-8)
1.60 -164,1 2.35(~9) 2.83 2,63(—2) 1.59(—4) 5,52(—17) —6,71(—10)
1.80 —83.89 1.01(-9) 1.35 1,23(~2) 7.98(—5) 3,86(—17) 1.27(-9)
2.00 —45,10 3.86(—10) 0.67 5,70(—3) 3.60{(—5) 1.82(=17) 7.39(—10)

A1l energies are in units of cm™; the numbers in parentheses indicate appropriate powers of 10.

B = 0 for HD— He and DCl-Ar; n =2 for 3’CIF-Kr.

Thus, if the calculations for which the transformation
is required need a highly accurate potential for RR,,
then the Gaussian quadrature method is the only accept-
able one. Also, should the transformation represent
only a small fraction of the total computation time, the
Gaussian quadrature method is again the best choice be-
cause of the higher accuracy attainable at a negligible in-
crease in computing time. However, if the time needed
for the transformation of potential represents a signifi-
cant cost in computer time and high overall accuracy is
not required, then the £-expansion formulas may prove
sufficient,

IIl. EXTENSION TO ATOM PLUS NONRIGID DIATOM

When the diatom is allowed to vibrate, the intermolec-
ular potential depends on the bond length + as well as on
R' and 6’. Replacing 7 by a stretching coordinate £ = £(7)
which is not affected by isotopic substitution, Eqs. (1)
and (4) may be generalized to

VIER,6) =D 9 Vs RNT((£)Pylcost’) (7
i n

U(g,R,e)=Z)Z Ups(R)T4(£) Py(cosb) . )
-3

The T;(£) functions appearing here are members of any
convenient set of orthonormal functions of £ such that

Jasw o T, =8, (®

where w(£) is an appropriate weight function. A particu-
larly useful choice of ¢ is given by'?

E=(r-r)/(rery | (10)

where the reference length 7, can be chosen to have any
convenient value, '* Values of £ defined by Eq. (10) range
from - 1 to + 1 as the bond length » varies from 0 to «,
so that the 7,;(£) functions can be chosen to be the (nor-
malized) Legendre polynomials.

The transformation between (R, 6) and (R’, ") coordi-
nates is again given by Eqs. (2) and (3), except that the
parameter ¢ becomes £ dependent; for the £’s defined by
Eq. (10), ¢ is given by

t=0/R=(6/N(r/R(1+8)/(1- &) .

In Eq. (11) the factor (6/7) is a constant, since a dis-
placement 6 due to isotopic substitution is a fixed frac-
tion of the diatom bond length ». Thus, R’ and ¢’ are
now functions of R, 9, and §. Invoking orthogonality of
both the T;’s and P,’s, expressions for the U,;(R) func-
tions of Eq. (8) are obtained as

(11

1
UpR) =+ D[ du(®) Ty
1
«J - d(coso)Pytcosa) (e, R, 0" | (12)

which reduces to Eq. (5) in the absence of £ dependence
in the potential. In this case, evaluation of U,(R) at a
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given R requires a double instead of a single quadrature,
but the procedure is no more complicated in principle
than that for the rigid diatom case. While this approach
yields U(£,R, 6) in the Legendre and T,{£) expansion forn
of Eq. (7), the initial potential V(£,R’, #’) need not be ex-
panded as Eq. (7), but could be any function which in-
volves dependence on the three coordinates (£,R’,9).
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