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Numerical studies and analytic results show that singularities in the appropriate contour integrals cause the
higher-order JWKB eigenvalue criteria to break down for energies near the dissociation limit of any
potential with an attractive inverse power (C,/R") tail for which n> 2. However, the expressions derived
for the characteristic near-dissociation behavior of these contour integrals provide a simple way of
predicting the range of binding energies over which this occurs from a knowledge of only n, the potential
constant C,, and the reduced mass p. This analysis also shows that for more than 70% of all diatomic
molecule electronic states, no vibrational levels lie in the very narrow region near dissociation where this
breakdown occurs. A related near-dissociation analysis shows that for levels in the upper part of a
potential well, applying the Langer-Kemble correction to the first-order quantization condition reduces
the errors in calculated eigenvalues by the fraction 3/(n+1), for n>2. In contrast, for the (#=6) model
problem studied numerically, use of the two-term (third-order) or three-term (fifth-order) quantization
condition reduces these errors by four or eight orders of magnitude, respectively.

l. INTRODUCTION

The Jeffries, ' Wentzel, ? Kramers, ® Brillouin? (JWKB)
“asymptotic” approximation is the most widely used ap-
proximate method for solving the one dimensional or
radial Schrodinger equation. With a few exceptionss™?
it is the single-term or first-order version of the JWKB
eigenvalue criterion which has usually been used in
practical applications to bound state problems. The
importance of the higher-order versions of this approxi-
mation has been examined in various contexts.® ' How-
ever, previous methods for evaluating the higher-or-
der terms in the eigenvalue criterion either restricted
consideration to special types of potential functions,
such as'®!? the family V(x) =x?™, or were difficult to
apply accurately to a general potential function. !

The present work utilizes the simple and reliable
quadrature procedure of Barwell and Le Roy!® to evaluate
the contour integrals appearing in the higher-order
JWKB eigenvalue criteria. This removes the limitations
mentioned above, since this procedure is readily applied
to any smooth single minimum potential, whether it be
defined by an analytic function or a set of points. More-
over, this method readily lends itself to the derivation
of simple analytic expressions which accurately repre-
sent these contour integrals at energies near the dis-
sociation limit. These expressions in turn lead to in-
teresting conclusions regarding the reliability and im-
portance of the higher-order JWKB eigenvalue criteria,

In Sec. II, the JWKB eigenvalue criterion is reviewed
and the present method of evaluating the higher-order
terms is described. The nature of the higher-order
versions of this approximation is then illustrated by
comparisons between the semiclassical and quantum
mechanical eigenvalues of a chosen model potential.
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As was found in earlier work of Beckel ef al.,!! the
errors associated with the higher-order eigenvalue
critieria increase sharply as the level energies approach
the potential asymptote. The generality of this be-
havior is demonstrated by the analytic expressions for
the characteristic ‘“near-dissociation” (ND) behavior of
the higher-order JWKB contour integrals, which are
presented in Sec. IV. These expressions also yield a
simple formula predicting the dominant correction to
the first-order eigenvalues for levels lying near dis-
sociation. Comparison of this result with a near-dis-
sociation expression predicting the effect of the Langer—
Kemble!®=?? correction to the JWKB approximation ef -
fectively points out the latter’s lack of practical im-
portance. Section V further examines the breakdown of
the higher-order JWKB eigenvalue equations, and pre-
sents and tests simple expressions for predicting the
onset of this behavior.

{l. THE JWKB EIGENVALUE EQUATION

According to the JWKB approximation, the eigen-
values of a potential V(R) are the energies E for which
the right hand side of Eq. (1) is precisely equal to a
(positive) half integer

VHE=A 8+ Ayt enn 1
where
1/2u i/2
A1:E1?<h_—2) $12-vR)/2ar, @)

VII(R)

Azzg_é;(éhll;)“2§ [E-ARP” R (3)
dR .

1 ;Z2 3/2
8= 30727 (z‘ﬁ)
(4)

Here, primes denote differentiation with respect to dis-
tance R, 7 is Planck’s constant, and p is the effective
(reduced) mass associated with the vibration. Explicit
expressions for higher-order contributions to Eq. (1)
are readily obtained from the results of Froman.’

5V/(R)V'"(R) -V (R)]
[E _ V(R)]'HZ
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It is clear from the approach of Froman ef al."? that
the divers contributions to Eq. (1) are associated with
the odd terms in the expansion of the wave function ex-
ponent in powers of 7, while the analogous terms for
even powers of 7 define the wavefunction amplitude.
Thus, the eigenvalue criteria obtained on truncating
the sum in Eq. (1) at various points correspond to odd
orders of the JWKB approximation, This labelling dif-
fers from the traditional identification of A, and A; as
the second- and third-order, "' or second- and fourth-
order®®? terms. In order to minimize confusion, we
shall refer to the third- and fifth-order quantization con-
ditions obtained on truncating the sum in Eq. (1) after
A, or A,, as the “two-term” or “three-term” JWKB ap-
proximations, respectively.

In practical applications of Eq. (1), the first term on
the right-hand side presents no difficulties, since the
integrand is well behaved and the contour integral may
be replaced by a line integral between the two classical
turning points R,(E) [defined by V(R,) = E]

1 2 1/2 ~R
— (—‘;) [ FlE-veyan . (5)
T\FK R,

Moreover, the apparent nonintegrable singularities in

the integrands of A, and A, disappear if we write

VH(R)

A2='Z_}ﬁ<£‘;>“2 5% (f:zmdx%), (6)
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Defining

(a"'V(R) )"

a* Ry 3R"

myn _

Ny Li RIE-VR]T 4] 8
then allows the quantization condition of {1) to be written
as

L__l_ 2“ 1/2 IRZ _ 12 —1_ E 1/2 -
v+2_ﬂ<%-2— . (E=W'2dR i 2u> 1%}

i

1 % 3/2 o 22
—M(E) (51'0—713,0) . (9)
The work of Barwell and Le Roy!’® has shown that sub-
dividing the interval [R,, R,] appropriately and per-
forming integration by parts in the regions near the
turning points allows one to obtain explicit expressions
for the I7’] in terms of easily computed quadratures over
the potential between the classical turning points. This
approach, which is readily applied to either analytic or
(smooth) pointwise potentials, was used in the present
work.

In the usual single-term (first-order) JWKB approxi-
mation, the eigenvalues are determined from Eq. (9)
with all but the first term deleted from the right-hand
side. However, Langer'® and Kemble!" have suggested
that a better result would be obtained on replacing V(R)
by [V(R) + #%/8 uR?] in both the integrand and the defini-
tion of the turning points. In the following, this ap-
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FIG. 1. Errors in single-term (first-order) JWKB eigenvalues
for the B,= 10? LJ(12, 6) potential as calenlated directly (points),
and as predicted by Eq. (21) (solid line} and Eq. (23} (dashed
line).

proach is compared with both the normal single-term
and higher-order approximations, and with quantum
mechanical results.

{Il. NUMERICAL RESULTS FOR A MODEL
POTENTIAL

In order to illustrate the nature of the higher-order
JWKB approximations, detailed caleulations were per-
formed for a model potential of the LJ(12, 6) form:

V(R)=¢[(R,/R)'* - 2(R, /R)] ,

where ¢ is the well depth and R, the equilibrium dis-
tance. Thewell-capacity parameter?

B,=2pe(R,)}/n?

was chosen to be B,=10% so that this is the same 24-
level 1.J(12, 6) potential used in previous studies. 224
While quantum mechanical and semiclassical eigenvalues
of this model potential were reported previously, ?* the
present study required results of much higher accuracy.
Therefore, new quantum mechanical results were
generated using a program?? based on those of Cooley®®
and Cashion.?” These calculations were performed in
double precision on a CDC-7600 computer using an in-
tegration mesh of 8X107R, and a range of 0.5< R/R,
<20, % and the eigenvalues obtained are believed to be
accurate to ca. £0.5x107'%¢. Throughout the following,
energies associated with the model potential results are
scaled by the well depth ¢, and the zero of energy is set
at the dissociation limit.

The quantum mechanical eigenvalues for the 24 levels
of the model potential described above are presented in
column 2 of Table I.%° The remaining columns show
the errors in the semiclassical eigenenergies obtained
using the one-term (first-order, both with and without??
the Langer-Kemble correction), two~term (third-or-
der), and three-term (fifth-order) versions of the JWKB
eigenvalue criterion. According to these results, the
single-term and Langer—Kemble approximations are
worst at the potential minimum, but become increasing-~
1y reliable for levels approaching dissociation. Indeed,
a plot of the errors in the single-térm eigenvalues (solid
points in Fig. 1) appears to suggest (incorrectly) that
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TABLE I. Quantum mechanical eigenvalues Eqyv) and their
differences with the ¢ term (i =1 —3) JWKB eigenvalues E;(v)
for the 24-level LJ(12, 6) potential defined by B,=10%. Energies
are scaled by the well depth € and the zero of energy is the
dissociation limit (Ref. 29).

108 % [E;(v) — Equv))

v Equv) i=3 2 1(LK?® 1
0 —0.941046032004 —0.0000 0.5118 -6122 ~8584
1 —0.830002082986 —0.0000 0.5206 —5864 —8249
2 -0.727645697520 —0.0000 0.5297 —5602 —7909
3 —0.633692951882 —0.0000 0.5391 =—5337 —7562
4 —0.547852043329 =—0.0000 0.5491 —5068 —7211
5 —0.469822910710 =—0.0000 0.5598 —4796 —6854
6 ~0.399296840304 —0.0000 0.5716 —4521 —6492
7  —-0.335956071148 —0.0000 0.5848 —4243 —6124
8 —0.279473385017 —0.0000 0.5998 —3963 —5752
9 —0.229512705496 —0.0000 0.6173 —3682 —5376

10 —0.185723701797 —0.0000 0.6383 —3399 —4995

11 -0.147751411298 —0.0001 0.6640 —3115 —4611

12 —0.115225890999 —0,0001 0.6960 —2832 —4225

13 —0.087766914229 ~0,0002 0.7365 —2550 - 3837

14  —0.064982730497 =—0.0003 0.7889 —2270 —3447

15 —0.046469911358 —0.0004 0,8579 ~—1993 —3058

16  —0.031813309316 ~0.0006 0.9507 —1721 —2670

17 —0.020586161356 ~0.0010 1,0785 —1455 —2285

18  —0.012350373216 —0.0018 1,2610 —1196 —1904

19  —0.006657024344 —0.0034 1.5351 —946 —1528

20 —0.003047136244 -0.0075 1.9805 —706 —1160

21 —0,001052747695 —0.0222 2.8101 =478  —800

22 —0.000198340301 =—0.1234 4.8423 —262  —449

23 —0.000002696883 —7.0317 15.8813  —53  —102

3Single-term (first-order) eigenvalues obtained using the
Langer—Kemble correction. (Refs. 16 and 17).

the single-term approximation becomes exact at the
dissociation limit,

Table I shows that the errors in the two- and three-
term JWKB eigenvalues are usually, respectively, some
four and eight orders of magnitude smaller than those
in the single-term eigenvalues. These errors are
smallest at the potential minimum and increase in mag-
nitude with vibrational quantum number, For the high-
est vibrational levels they grow particularly rapidly,
and for the last bound level (v =23) the two- and three-
term eigenvalues are virtually no more accurate than
the one-term result. This behavior appears to suggest
(correctly, see below) that the higher-order JWKB ap-
proximations break down for levels lying in the im-
mediate neighborhood of the asymptote of this type of
potential,

As a check on the present procedures, it is reassur-
ing to note that extrapolation of the one- and two-term
eigenvalue discrepancies to the potential minimum yields
essentially exact agreement with the zero point energy
corrections ¥;,=28750.0x1078¢ and Z,,= - 0. 5076 x10 3¢
obtained from the expressions of Dunham® and Sande-
man.®

The behavior of the JWKB results in Table I illustrates
the fact that for LJ(12, 6) model potentials: (i) A,(E) is
always negative and A4(E) always positive, and (ii)
14,(E)| and |A,(E)| both monotonically increase with
energy and appear to become singular as E approaches

3141

the dissociation limit D, The latter behavior is further
illustrated in Fig. 2. For two LJ(12, 6) potentials with
different well capacity parameters, the curves in this
figure show the results of one-, two-, and three-term
calculations of (v+3%). By definition, the JWKB esti-
mates of the v=1 eigenvalue are the energies at which
the various curves cross the horizontal line at v +3
=1.5. The solid points indicate the quantum mechanical
energies for these two cases. It is clear that for a
level sufficiently close to dissociation {e.g., v=1 for
B,=4T7), the two-term JWKB approximation will (falsely)
predict it does not exist while the three-term approxi-
mation will give a worse eigenvalue than the single-
term approach. It will now be demonstrated that these
conclusions apply quite generally to virtually all in-
teratomic pair potentials.

IV. NEAR-DISSOCIATION BEHAVIOR OF THE JWKB
EIGENVALUE CRITERIA

A. General

In recent years it has been found that the properties
of vibrational levels lying near a potential asymptote
depend mainly on the long-range part of the potential
energy function. 192430=34 At long range, virtually all
atomic and molecular interaction energies have an in-
verse power form,

(10)

and simple analytic expressions have been derived which
show how the vibrational spacings, 239 rotational con-
stants, %32 and various other properties3®3* of levels
near dissociation depend on the parameters in Eq. (10).
In particular, the work of Ref. 24 showed that

V(R)~D-C,/R",

AY(E)=vp +35 = Wi(n)[ D= E()]"®/? | for n+2,
(11a)

3 1 1 (C,)17? D-E{)
=Nt T @ReT? 1n<D—E(vO)> ’

for n=2 . (11p)

Aog [(D-E)/E]
-2 -4 6 -8 -©
2.0 JT T T L T T } T Il ll L III

10

02
[o-E)/€)v®

FIG. 2. Onme-, two-, and three-term JWKB values of (v + 1)
for two model LJ(12, 6) potential functions with different well

capacity parameters. The solid points denote the quantum
mechanical eigenvalues for the two cases.
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Here, v, and v, are integration constants, and

2u>1/2 (c)H/m TG + %) r(‘i‘)

n
_ ‘j‘—’l(n)[ﬂ"(cn)z]“h ,

where I'(x) is a gamma function, ** and values of the nu-
merical constants: W,(n) are listed in Table I1.%¢ For
n>2, vy is the effective (noninteger) vibrational quan-
tum number at the dissociation limit, while for %<2 it
represents the quantum defect; for n=2, v, is the quan-
tum number of an arbitrarily chosen reference level.
Equations (11) clearly show that for the n>2 cases which
are of most physical interest, A,(E) approaches a finite
value as E~ D.

(12)

For levels near the dissociation limit D, the values of
A, and A; also depend mainly on the long-range part of
the potential function. Imitating the precisely analogous
derivation of near-dissociation (ND) expressions for the
centrifugal distortion constants!® then yields, for n>2

AYP(E) = - Wy(n)[D - E(u)]" "2/ | (13)
AYP(E) = Wy(n)[ D - EJ3¢m2/2n | 1

(52) () (3-2)7G)

i7n
241(C,) T3 - (1 I )

where

w, (n) =

W, (n)
= TG )
;iZ 3/2
Z—[I) (n? ~9)2n-3)(n+1)
9607(C,)*'" "

3 3 1
FE-;%(E

3
1"(2 - ;)
= W3(n)/[ “'n(cn)2]3/2" 3

and values of the constants W,(n) and Wy(n) are given in
Table II. As an illustration of the applicability of these

W3 (n) =

(16)

TABLE II. Values of the numerical fac-
tors W,(n) = W (n) % [W(C,) 2123 /2 appear-
ing in Egs. (12), (15), and (16), calculated
for masses, energies, and lengths in

units #(!2C=12), em™, and A, respectively,
using the physical constants of Cohen and

Taylor. (Ref. 37).
i=1 2 3
n=3 0.17369900 0,5290079 0.0
4 0,09288798 0.3569599 0.6014913
5 0.06475544 0.2976142 1,3168974
6 0.05014258 0.2672450 2.1687300
8 0,03488587 0.2362136 4.2959891
10 0.02688728 0,2203793 6.9945997
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FIG. 3. Comparison of ND predictions AE‘D(E) obtained from
Egs. (13)-(16) (dashed curves) with directly calculated A(E)
values (solid curves) for the B,= 10% LJ(12, 6) model potential.

expressions, Fig. 3 shows how values of A} and A}P
(dashed curves) generated from Eqs. (13)—(16) approach
the exact values of A, and A; (solid curves) at energies
near the dissociation limit of our 24-level LJ(12, 6)
model potential.

Substituting the above results into Eq. (1) yields the
near-dissociation form of the three-term JWKB eigen-
value criterion:

(0 +5° = (v, + ) =~ Wy (m)(D = B) 2 /27
D 1
- Wz(n)[D_E]-(n-z)/Zn
+ Wy(m[D— EJSDn

Differentiating this equation and inverting the result
then yields the semiclassical ND expression for the vi-
brational frequency

S A -1_< 2n _ g2y /2n
W ”(aE “\n-2 [D-E] /

am

{w,(n) - Wy(m)[ D=~ EI""2/" + 3W,(m)[D - E]2"2/"}
(18)

The characteristic near-dissociation behavior of this
function is illustrated in Fig. 4 by plots of one-, two-,
and three-term values of w, for the 24-level LJ{(12, 6)
potential (z=6) considered above. Note that the sin-
gularity in wP(2) seen here corresponds to a maximum
in (v +3), of the type seen in Fig, 2.

As is well known, *® A,, A, and all higher-order JWKB
terms are identically zero for an R™! potential, Setting
the integration constant vy(n=1)=—1 therefore makes
the single-term version of Eq. (17) identical to the
quantum mechanical result.

For the n=2 case, application of the usual ND ap-
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FIG. 4. Behavior of one-, two-, and three-term values of w,
= (dv/dE)™! near the dissociation limit of the B,= 10 LJ(12, 6)
potential discussed in Sec. IIl. Eqy(v = 23) denotes the energy
of the highest bound level while the &Y values correspond to
various predictions for the onset of the breakdown of the
higher-order quantization conditions (see Sec. V B).

proximations!® 2431 to the three-term quantization con-
dition yields °

. . 1 C 1/2[ 1( h—2 1( h—? 2
1 1_ 1 1-= _=
vha=ttz 21r<ﬁ’/2p) 2 8;102) 8 8,1102)]

X1n (3’5’{%)

(19)

It is well known that for an R™? potential the exact quan-
tum mechanical eigenvalue expression is obtained by
merely replacing C, in Eq. (11b) with (C, -#?%/8u)!/2, %
It is therefore interesting to note that the terms due to
A, and A; which distinguish Eq. (19) from the single-
term result, Eq. (11b), are equal to the second and
third terms in a binomial expansion of the square root
of this “effective” C, value

N2 ayiefy L ("
- EY" =t (-3 (520

l(.]f_ 2
8 8uC2) ']

This suggests that for this (z=2) case, the “asymptotic”
JWKB approximation converges to the exact (quantum
mechanical) result! Note, however, that the fact that
AYP =0 for n=3 [since W,(3)=0, see Table II|] merely
reflects the fact that Wa(n) changes sign at this value of
n, and is not due to any special accuracy of the JWKB
approximation for this case.

The present work focuses attention on the n>2 cases
for which analytic quantum mechanical results are not
available. Equations (13) and (14) show that for these
cases A, and A, are singular at the dissociation limit,
with A, being always negative, and A, being positive for
n>3 and negative for 2<x<3., This demonstrates the
generality of the behavior of A, and A; suggested by the

3143

numerical results in Table I and Fig. 2 (and by the work
of Beckel et al.!!). For energies sufficiently close to
dissociation, the two-term eigenvalue criterion will al-
ways predict that increasing the energy further will de-
cvease the vibrational quantum number, and that v,

For 2<n<3, inclusion of A; in the quantization
condition exaggerates this behavior, while for n>3 the
positive singularity of A, overcomes the negative sin-
gularity of A, and yields the (false) prediction that v,
=+ for all potentials with this type of long-range tail,

= =00,

These results clearly demonstrate that while inclusion
of the higher -order terms significantly improves the ac-
curacy of the JWKB eigenvalue criterion for most
levels, near the dissociation limit the higher-order
methods break down. However, our analytic expres-
sions for A}P and A}® provide a simple means of pre-
dicting where this breakdown occurs, and also of esti-
mating the error in single-term (first-order) JWKB
eigenvalues for levels lying near dissociation. Sec-
tion IV B considers the latter question and examines
the importance of the Langer-Kemble correction to the
single-term JWKB guantization condition.

B. Corrections to the single-term energy, and the
Langer-Kemble transformation

Except for an extremely narrow region immediately
below the dissociation limit (which is overlooked here)
the higher-order JWKB quantum condition of Eqs. (1)
and (9) yields eigenvalues which are very close to the
exact (quantal) values for a given potential function,
Moreover, since |A;/A,| <<1 (except for the neglected
region mentioned above), the dominant source of error
in the single-term (first-order) JWKB eigenvalues is
due to the neglect of the term A, in Eq. (1). Thus, the
errors of 6u~A, in the calculated values of (v +3) will
give rise to errors of approximately

(20)

in the single-term eigenvalues E;. Combining the ND
expressions for w, and A, with the single-term version
of Eq. (17) then yields the result

SE=(dE/dv) X bv=w,A, ,

SEY® = w”(1)a}P = - Pm)[D - E*'"

~ —R(n)[vD _v]4/(n-2> , (21)
where P(n)=[2n/(n-2)]W,(rn)/W,(n), and
P(n) Rin) (22)

R(n) = [Wi(n)]U‘"'z’ = [un(cn)zP/(FD ’

and numerical values of the constants R(») are given in
Table III. For the (n=6) B,=10* LJ(12, 6) potential
considered in Sec. III, the solid line in Fig. 1 shows the
values of 6E)® calculated from Eq. (21) [for this case,
R(6)=3.2577x10%¢]. The semiquantitative agreement
with the exact discrepancies for the lowest levels (solid
points in Fig. 1) is certainly a result specific to this
type of simple two-term model potential, However, the
accuracy of the predictions of Eq. (21) for the highest
levels should hold true for all potentials with inverse
power tails, Moreover, since w,(1) approaches zero

at dissociation faster than A, blows up [cf. Egs. (13)
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TABLE III. Values of the numerical
factors R(n) and Ry x(n) appearing in Eqgs.
(22) and (24), calculated using the same
units and physical constants as in Table
II. f¥P(n) is the predicted fractional re-
duction of the error in the single-term
energy, provided by the Langer—Kemble

correction.
E(n) Rix(n) NP(n)

n=3 20073.7 15 055. 2 3/4

4 1781.56 1068. 94 3/5

5 589.144 294.572 3/6

6 318.873 136.660 3/7

8 169.118 56.373 3/9

10 124. 966 34.082 3/11

and (18)], the utility of Eq. (21) is not affected by the
singularity in 4, at D.

The Langer~Kemble (LK) correction to the one-term
JWKB approximation has the effect of raising the single-
term eigenvalues by B,/4, where B, is the usual rota-
tional constant associated with level v. Use of the pre-
viously reported®? ND expression for B, therefore yields
a simple analytic expression for the LX correction to
a single-term eigenvalue

~8EY2 = B,/4=Ry(m)[v,-v]¥/ " | (23)
where
RLK(n) = I_{Lx(n)/[ ﬂn(cn)z]“("-Z); (29)

and the numerical factors Ry g(n) are listed in Table III.
Since Eqs. (21) and (22) and Eqs. (23) and (24) have ex-
actly the same form, the adequacy of the LK correction
in the near-dissociation region clearly depends on the
agreement between Ry, (n) and R(n). More specifically,
these expressions predict that use of the LK correction
will only reduce the errors in the single-term eigen-
values by the fraction

S. M. Kirschner and R. J. Le Roy: Higher-order JWKB quantization condition

) =R () /Rn)=3/(n+1) .

Comparison of the last two columns in Table I (for which
case n=6 and® v,=23,358005) shows that this predic-
tion is fairly accurate for the highest bound levels. For
this same model problem, the dashed line in Fig, 1
corresponds to 5EYL values generated from Eq. (23).

The above results show that introduction of the LK
correction removes only a fraction of the error in the
single-term eigenvalues of levels lying near dissocia-
tion. Moreover, model calculations by Beckel et ql. !
on a different potential function show that inclusion of
the LK correction will sometimes give worse results
than the simple single-term method. In particular,
since the LK correction always raises the energies, it
will always give worse results for the lowest levels of
potentials for which the Dunham constant Y, is nega-
tive. Relative to the improvement obtained on using the
higher-order JWKB eigenvalue criteria, the LK cor-
rection does not appear to be particularly useful.

V. BREAKDOWN OF THE HIGHER-ORDER JWKB
EIGENVALUE CRITERIA

A. Near-dissociation behavior of model potential results

Quantum mechanical, and one-, two-, and three-term
JWKB eigenvalues were calculated for series of LJ(2#,
n) model potentials (n=86, 5, 4, and 3),

V(R) = €[(R, /R)*" - 2(R, /R)"] ,

corresponding to different values of the well-capacity
parameter B,. The B, values were chosen so that the
potentials had only one or two bound levels. Results
for the v =1 eigenvalue are presented in Figs. 5-8.
The solid curves seen there represent the actual cal-
culated energies, while the dashed curves correspond
to the differences between the quantum mechanical
eigenvalues Eg, and the 7 term semiclassical energies
E,. Decreasing B, shifts the level closer to dissocia-
tion and eventually spills it out of the potential well,
The arrows denoted vD(QM) and vD(l) indicate the B,
values at which the quantum mechanical and single-term

10%x Energy/ €

A
(6]
O

LJ(12,6)

)
Q
?

FIG. 5. Calculated eigen-
values (solid curves) and eigen-
value differences (dashed
curves) of the v =1 level for a
series of LJ(12, 6) potentials
with different well-capacity
parameters. The dotted
curves labelled &5 correspond
to various predictions of the
onset of breakdown of the
higher~order quantization con-
ditions,

-250 I S S
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FIG. 6.

For LJ(10,5) model potentials, as in Fig. 5.

JWKB eigenvalues are spilled out of the well. As was
suggested by Fig. 2, the two-term JWKB eigenvalue
E, disappears before it reaches D, at the B, value for
which the maximum in the two-term JWKB value of

(v +3) is exactly equal to 3 (B,=53.0 for n=6). Simi-
larly, the three-term eigenvalues E, remain bound for
all nonzero B,’s.

One comforting feature of these results is the fact that
up to the point at which it becomes undefined, the two-
term JWKB eigenvalue provides a reasonably reliable
estimate of the level energy, and the normal ordering

|Ey~ Eqy| > | E, = Equ| = | Es ~ Eqy|

holds true. Indeed, for these v=1=v, model problems,
the reversal | E; - Eqyl > | Ey — Eqy! usually does not oc-
cur (the exception being the LJ(12, 6) case) until the ex-
act (quantal) eigenvalue has been spilled out of the well
(see Table IV). Moreover, while large on the scale of
Figs. 5-8, the largest of the | E, — Eqyl| and | E; — Eqyl
discrepancies shown here is less than 0. 1% of the vibra-
tional level spacing. However, these observations may

.o

lf'ﬂl'l\)
d o G

10° x Energy/€

5

25—

FIG. 7. For LJ(8,4) model potentials, as in Fig. 5.
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-100

FIG. 8.

For LJ(6, 3) model potentials, as in Fig. 5.

not generalize either to different types of potentials or
to potentials having more bound levels. In addition, it
is important to remember that the two-term criterion
completely overlooks the existence of eigenvalue(s)
lying too close to dissociation, while the three-term
criterion incorrectly predicts (for »> 3) that an infinite
number of levels lie within any finite neighborhood of D.

It is clear that the higher-order JWKB eigenvalue
criteria cannot be used in the immediate neighborhood
of the dissociation limit, However, the results in Figs.
5-8 show that the effect of this breakdown on the higher-
order eigenvalues is not nearly as catastrophic as might
be suggested by the near-dissociation behavior of the
A, and A4 functions, illustrated by Figs. 2 and 3, This
is qualitatively explained by an argument associated
with Eq. (20); the fact that w,~ 0 for levels approaching
dissociation damps the effect of the singularities in A,
and A,

B. Predicting the breakdown of the higher-order
JWKB eigenvalue criteria

The behavior of the curves seen in Fig. 2 points out
two characteristic energies which are associated with
the breakdown of the higher-order JWKB eigenvalue
criteria, These are: the binding energy ®; at which
the two-term result (v + 3), has its maximum, and the
binding energy ®; at which (v +1),=(v+3), (i.e., at
which A,=4,). An alternate perspective on this break-
down is provided by Fig. 4. The singularity in the two-

TABLE IV. For the LJ(2n,n) potentials
of Figs. 5—8, comparison of one- and
three-term » = 1 eigenvalues at the B,
value for which the quantal value lies
precisely at the dissociation limit.

n  BJlvpQM)=1] E/e E,/e

3 4.54 0.00020

4 14.00 0.00048 0.00008
5 28.02 0.00054 0.00034
6 46.62 0.00055 0.00064
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TABLE V. Values of the numerical factors
appearing in Egs. (25)-(29), calculated using
the same units and physical constants as in
Tables II and III.

n Ki(n) K¥(n) Kyn) R (n)
3 28,2484 0.0 77.5137 0.0
4 14.7679 2.8394 41.0220 25,5542
5 12,7046 11,9261 35.6482 74,4216
6 12.3042 23.1177 34.8016 120.1229
8 12.8097 47,8275 36.6525 206.9376
10 13.8685 75.3339 39.9945 297.4348

term result w,(2) occurs at ®}, but this plot shows that
w,(2) has unphysical behavior for binding energies less
than @5, the point at which w,(2) has its minimum,
Thus, the condition that w,(2) have zero slope {(at &)
provides an alternate criterion for the validity of the
two-term quantization condition. Similarly, the binding
energy ®; at which w,{1} = w,(3) provides a second pos-
sible criterion for the validity of the three-term quanti-
zation condition.

Making use of the near-dissociation expressions in

Eqs. (17) and (18), expressions for these critical binding

energies are readily obtained

o (W\" ™R3
w=(%0) = GEeTe (25)
w. n/ (n=2) v
&;:<VT’§%> = [u"(ci{) }n)("- 3o (26)
W _ In-2 M "/(n-Z)- Ew(n)
2- ( n+2 W1(n)> = [ 7D » (27)

w 3W. (n) n/(n=2) Rw(n)
= ( W,(n) ) = AT D (28)

where the numerical constants K}, K3, Ky, and K§
are listed in Table V. These constants show that the

w, criteria are distinctly more pessimistic than those
based on the behavior of (v +3%), in that the former pre-
dict breakdown of the higher-order approximations at
binding energies a factor of 23 larger than do the latter.
The arrows in Fig. 4 and the dotted curves in Figs.
5-8 indicate the critical binding energies predicted by
these criteria, In the latter, the near coincidence of
the (dotted) ®} curves with the ends of the (solid) E,
curves, and of the (dotted) ®} curves with the intersec-
tions between the (solid) E; and E, curves demonstrates
the reliability of the ND expressions of Egs. (25)-(28).

The purpose of this section is to devise a simple
criterion for predicting when the higher-order JWKB
criteria should #nof be used, and for this end, the dis-
tinctions between the criteria of Egqs. (25)—(28) are not
important. We therefore propose that the single equa-
tion, (29), for all 3 <n <86, be used to predict the

&*:30/['un(cn)2]1/(n-2) (29)

smallest binding energy for which the higher-order
JWKB eigenvalue criteria should be used.?® In cases
where realistic behavior of the vibrational frequency w,
is particularly important, the numerical factor in (29)
should be increased to ca. 80.

In order to demonstrate the practical significance of
the breakdown of the higher-order quantization condi-
tions, Eq. {29) has been used to predict the binding en-
ergy at which this breakdown occurs for a variety of
known molecular species. The results are shown in
Table VI. They suggest that at worst, only the highest
bound level in a given potential will lie in the extremely
narrow region near dissociation where the higher-order
JWKB quantization conditions breakdown. Thus, this
breakdown is of little practical concern for most prob-
lems of physical interest.

An alternate measure of the importance of this ND
breakdown of the higher-order JWKB quantization con-

TABLE VI. Predicted binding energies ®* characterizing the breakdown of the higher-order
JWKB quantization conditions, as calculated from Eq. (29). [D —E(vy,,)] is the observed (pre-

dicted) binding energy of the highest bound level for each species.

Species n C,/cm™ A" [D ~ E(0ppe))/cm™ ®*/cm™! Refs.
LJ(12,6) for B, =10 6 2¢RS 2.7x107¢ 0.30x10%6¢ 2
Dy(x !5 6 3.1364x10% 1.80 0.17 40,41
Hy(x '53) 6 3.1407 x 104 145.6 0.47 30, 40, 42
H,(B'z}) 3 3.6096 x 104 (0.6x10°" 1.8x1077 30,43
Ary(X13) 6  32.6x10% (31x 107 5.9x10™ 44,45
HgCl(x %z*) 6 81x 104 b 2.1x10™ 46
Hgl(X ®Z*) 6 118x 104 b 4.0x107® 46
XeCl{X 2z*) 6 80x 104 v 2.3%10™ 47
Clyx1'zy 6  46.8x10 b 6.0x10™ 48
Cly(B3ng,) 5 12,24 x104 (1.6x107%) 1.0x10™ 31
I(B*ng,) 5 27.76 x10* (7.4%107%) 7.0x1076 49
coxlzy 5 9.70x104 b 5.7x10™ 50

4Present work.

PThis quantity cannot be estimated reliably since v, is not known with sufficient accuracy.
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dition is provided by the quantity Av*, the (semiclas-
sical) range of v associated with the distance between

the dissociation limit and the critical binding energy

®* of Eq. (29). Inverting and integrating the single-term
version of Eq. (18) yields an expression for Av* which
depends only on the integer n, and not at all on the re-
duced mass u or potential constant C,

Av*(n)= fj* (Eﬂ)d(p_E): W, (n) x (30)m=2/2n (30)

3
The values of W,(n) in Table I then yield Av*(n)=0. 31,
0.22, 0.18, and 0.16 for »=3, 4, 5, and 6, respectively.
Assuming that the noninteger part of v, is randomly
distributed between zero and one, this means that for
more than 70% of all molecular states, *! no vibrational
levels lie in the region where the higher-order JWKB
quantization conditions break down, and that for all
other cases only one level lies in this region.

VI. CONCLUSIONS

The present work has shown that singularities in the
appropriate contour integrals cause the higher-order
JWKB eigenvalue criteria to breakdown for energies
near the asymptote of any potential with an attractive
inverse-power (R™) potential tail for which »>2, How-
ever, a near-dissociation analysis of this phenomenon
has provided a simple analytic expression for predict-
ing the range of binding energies in which this break-
down occurs, This analysis also shows that for most
molecular states, no vibrational levels lie in this re-
gion, This is an important result, as it means that the
great increase in accuracy provided by the higher-or-
der JWKB approximation may be exploited with con-
fidence for virtually all bound state problems of practi-
cal interest. Moreover, the ease with which the quadra-
ture method of Ref. 15 yields accurate values of these
higher-order contour integrals should facilitate future
applications of the higher-order methods.

Another useful result concerns the importance of the
Langer~Kemble correction to the ordinary single-term
JWKB approximation. We found that in the near-dis-
sociation region this correction reduces the error in
the single-term eigenvalue by a factor ranging from
ifor n=3 to & for n=6. However, relative to the much
greater improvement [by up to four orders of magnitude
for our model LJ(12, 6) potential!] yielded by the higher-
order JWKB approximation, this change is scarcely
noticeable. Since this “correction” may even have the
wrong sign for the lower vibrational levels, it appears
to be of little real use in applications to the bound states
of realistic potential energy functions. This conclusion
should not be at all surprising, since as Pack has
pointed out, ?* the Langer-Kemble transformation was
introduced specifically to account for the boundary con-
dition at the origin for »=2 and 1 potentials, and there
is no reason to expect it to be useful for other cases
as well.

Our final point concerns the questions which might
appear to be raised by the resultsin Figs. 5-8 regarding
the reliability of the simple single-term ND expres-
sions for the vibrational spacings?%3® and other prop-
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erties!®31:33:34 of Jevels lying near dissociation. In

this regard it is important to recall that in the ND
analyses the quantity v, is an unspecified integration
constant which is determined in practise by fitting the
single-term version of Eqs. (17) or (18) to experimen-
tal data. Thus, the essential question is really whether
the single-term results correctly mimic the shape of the
functional behavior of the quantum mechanical values.
The model problem studies in both Ref. 24and the pres-
ent work indicate that this is true, Therefore, the
simple functional behavior predicted by the single-term
(first-order) ND expressions for the vibrational level
distribution continues to be?! a reliable tool for deter-
mining accurate dissociation energies and long-range
potential constants.
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