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A semiclassical RKR-like inversion procedure for determining a repulsive diatomic molecule potential energy
curve from structured bound—continuum transition intensity data is derived and tested. The method presumes
a knowledge of the (attractive) initial state potential well and of the energy and vibrational assignment of the
absorbing or emitting level. Its application to a structured emission continuum of NaK observed by Breford
and Engelke [Chem. Phys. Lett. 53, 282 {1979)] yields a potential energy curve which is incompatible with
other known properties of this system, a result which confirms the suggestion of Kato and Noda [J. Chem.
Phys. 73, 4940 {1980)] that the original assignment of the initial state for this spectrum is in error.

I. INTRODUCTION

The determination of repulsive diatomic molecule po-
tential curves from bound-continuum transition intensi-
ties is a very old problem which has been attracting at-
tention since the early days of quantum mechanics. !
Over the years, work on it has usually been based on a
wave mechanical description of the phenomenon, with
most attention being focused on the problem of efficient
and accurate evaluation of the overlap integrals be-
tween the oscillating bound and continuum wave func-
tions.? ' Once a computational scheme was adopted,
these overlap integrals would be evaluated for some
trial potential energy and transition moment functions,
and those trial functions varied until the synthetic spec-
trum agreed with experiment. In the early days, the
simplifying approximations introduced in order to make
the computations feasible limited the accuracy of po-
tentials obtained in this way. However, modern com-
puter technology and numerical methods removed the
need for such approximations more than a decade ago,
so that the accuracy of potentials and transition moment
functions obtainable in this way is now mainly deter-
minec}sby the quality and extent of the experimental
data.

While bound—continuum absorption or emission in-
tensities can in principle always be analyzed using the
“exact” computational and fitting procedures referred
to above, the more direct inversion procedure reported
below is a complementary approach which offers some
distinct advantages. The first of these is that it pro-
vides greater insight into the nature of the information
contained in the experimental data. In particular, it
distinguishes between the “phase” and “amplitude” in-
formation in the experimental spectrum and shows how
the positions of the intensity extrema are determined
by the shape of the continuum potential while the peak
heights depend on the transition dipole function. The
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second advantage is that, as with any RKR-like inver-
sion procedure, the present method requires no prior
assumption about the analytical form of the potential or
transition moment function. Finally, the computational
effort required by thig method is minimal,

The procedure described herein is based on Hunt and
Child’s uniform harmonic approximation for bound-free
overlap integrals. 14,15 This approximation is reviewed
and tested in Sec. II and show to be substantially more
accurate than commonly used older overlap integral ap-
proximation methods. !'? The inversion procedure is
derived in Sec. III and tested in Sec. IV by application to
a synthetic spectrum generated from a model for the
visible photodissociation continuum of Br,. Its utility is
further demonstrated in Sec. V where it is used to
analyze a fluorescence emission continuum of NakK. 6

{l. THE UNIFORM HARMONIC APPROXIMATION FOR
BOUND-CONTINUUM OVERLAP INTEGRALS

The phenomenon of interest is the absorption (or
emission) of light of frequency v= |E —E,|/hc by a
molecule initially in vibrational level v with energy E,
and inner and outer turning points a, and b;, respective-
ly, on the initial state potential energy curve V,(R),
causing a transition to a continuum state at energy E
with turning point R(E) on the repulsive potential curve
Vi(R). This phenomenon is illustrated in Fig, 1 for the
case of absorption from the v = 5 level of the ground
(X %) state of Br, into the continuum associated with
the repulsive I, state.®'* The resulting calculated
(exact quantal) absorption continuum is shown on the
left-hand side of this diagram, As throughout this
paper, the zero of energy is taken to be the energy E,
of the initial vibrational level, Note too that the present
discussion applies equally well to absorption or emis-
sion, the only difference between them being that for
the latter the energies E and V,(R) are negative (i.e.,
less than E,).

The two essential conditions for the applicability of
the present procedure are that V(R) must be purely
repulsive on the interval a; =R = b, and that at any
final state energy E for which the turning point R,(E)
lies between a; and b,, there exists exactly one mo-
mentum-conserving transition point R (E) lying be-
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FIG. 1. Mlustration of the phenomenon and defintion of
variables for the X 12;—- 'M,, spectrum of Br,.

tween R(E) and b, which satisfies the criterion

E-Vi{R)=E, - VR, . (1)
If this condition is not satisfied the transition intensity
acquires a more complex interference structure! >’

and the theory and inversion procedure used here is not
valid, 18

The present theory is based on Hunt and Child’s!®
uniform harmonic approximation for the transition am-
plitude coupling a discrete and a continuum state

My = /o ) ¥, (R)M(R)¥ 1 (R) dR

= M(R,) [0/(u,aF,) 12 (20 + 1 = (E)* ] 49 (£(E)), (2)

where ¢,(£) is the yth harmonic oscillator wave func-
tion!®

o (&) = [2°01n" 2TV 2 H (£) exp(- £2/2) (3)
and its argument £(E) is implicitly defined by the equa-
tion

A(E)

R, (E)
(2u/RY)1/? {j; o (E -V (R)]V?dR
1

by
o Vz(R)]UzdR}
R {E)
- £Qv+ 1-£HY2/2+ (v+ 1/2) cos /(20 + 1/?],
(4)

where u is the reduced mass, The constant w appearing
in Eq. (2) is the classical bound state oscillation fre-
quency for level v,

w=(8E /o) /K (5)
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and the quantities «, and AF, are defined by the prop-
erties of the two potential energy curves at the transi-
tion point R,:

u,={2[E - ViR V', (8

AF1= [VZI(Rx)—V{(Rx)] ’ (7)
where primes denote differentiation with respect to R,

Note that the validity of Eq. (2) should not depend
significantly on the nature of the M(R) function as long
as it does not undergo drastic nonlinear changes on a
range comparable to the de Broglie wavelength as-
sociated with the ¥ (R) function. In the extreme case
that this did occur, the present approach would not be
appropriate, Note too that this “uniform harmonic ap-
proximation” does not assume that ¥, (R) can be ac-
curately represented by a harmonic oscillator wave func-
tion, but rather maps the latter onto the former in a way
which mimics the phase and amplitude behavior of the
exact function.

The basis of the present procedure is Eq. (4), which
maps M, onto the known function ¢,(¢) by requiring the
phase integral sum in the first line of this equation be
equal to the uniform asymptotic approximation model
for it given in the last line. It is readily shown that
utilization of the JWKB approximation for the nor-
malized function®

o (B =(2/mV 220+ 1 - &1V * sin[A(E) + 7/4] (8

reduces Eq. (2) to its well-known primitive semiclas-
sical form?!

Mg ~M(R)(2w/qu,AF )/ sin[A(E) + 1/4] . (9)

Equation (2) was tested by comparing its predictions
with the results of exact (numerical) quantum mechanical
calculations for the two model problems considered be-
low. The first of these, modeled on the X 'z;~'M,, ab-
sorption continuum of Br, (see Sec. IV), 6,13 g a case in
which the repulsive potential supporting the continuum
wave functions is much steeper than the repulsive branch
of the bound state potential over the whole of the interval
between the turning points of the latter. This is the
optimum situation for the use of Eq. (2), and in this case
its predictions are virtually indistinguishable from the
quantal calculations.

The second test case is a model based on a continuum
emission spectrum of NaK, which was initially identified
as the D 1 - ¢ ®%* transition (see Sec. V). It provides
a more critical test of Eq. (2) because for R, values
near a, the difference between the slopes of the initial
and final state potentials AF, becomes fairly small,
Nevertheless, the comparison with quantal calcula-
tions seen in segments A and B of Fig, 2 is very gratify-
ing. In particular, the positions of all but the two
lowest-frequency (i.e., highest continuum state energy)
maxima are correct to within 0. 5% of the peak separa-
tion, while the errors in two remaining peak positions
are only slightly larger. Similarly, except for the
lowest frequency maxima, the peak heights obtained
using Eq. (2) are correct to better than 1%, and the bulk
of the error for the remaining points is probably large-
ly due to the fact that AF, is small there.
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FIG. 2. Comparison of various methods for calculating bound-
continuum trangition intensities for the case of the NaK emis-
sion spectrum discussed in Sec. V: A—exact quantal calcula~
tion; B—uniform harmonic approximation of Eq. (2); C—Condon
reflection approximation, D—Gislason’s local Airy function ap-
proximation.

For the sake of comparison, Fig. 2 also contains plots
of this same spectrum as predicted by the Condon re-
flection approximation (segment C)!? and Gislason’s
local Airy function approximation (segment D). '3 The
former approximates the continuum state wave function
¥ (R) by a delta function located at the turning point
R((E), while the latter approximates ¥;z(R) by an Airy
function and evaluates the overlap integral analytically
after expanding the bound state wave function ¥,,(R) in a
Taylor series about Ry(E). These two methods yield
predictions which bear only a superfacial resemblance
to the exact spectrum, While the Gislason method per-
forms slightly better than the reflection approximation
at low frequencies, it becomes completely unreliable
at low continuum state energies where the slope of the
final state potential at the classical turning point is
relatively small. This behavior reflects the break-
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down of the fundamental approximation underlying both
of these methods, the requirement that the de Broglie
wavelength of the bound state wave function be much
longer than the oscillation period of the continuum wave
function near its turning point. In general, this approxi-
mation will break down most readily for low continuum
state energies and high-v bound state levels. Thus,
these older approximation methods are even less reli-
able than was suggested by the discussion of Ref. 13
which considered only absorption by molecules in ther-
mal equilibrium, a situation in which contributions
from low-v states are dominant,

This virtually complete breakdown of the delta func-
tion!-? and Gislason'? approximations provides a much
more dramatic warning about the weakness of those
procedures than was evident from previous studies. !
It therefore appears that the uniform harmonic ap-
proximation of Eq. (2) is probably the most reliable
approximate method for evaluating bound-continuum
matrix elements. Its main weaknesses are that it be-
comes unstable when the potential slope difference AF,
approaches zero, and that it is restricted to continuum
state energies for which a,(v) < R,(E)=b,{v). However,
in practice these are not very severe limitations.

3

{Il. THE INVERSION PROCEDURE

The inversion procedure has two steps. The first
of these is the determination of the energy dependence
of £(E), and hence of A(E), by mapping the intensity
maxima and/or minima of the observed spectrum onto
the positions of the extrema and nodes of the harmonic
oscillator functions ¢,(£). The second step is the de-
termination of the repulsive potential V{(R) from this
knowledge of A(E). Upon completion of this inversion,
it is also possible to extract the radial dependence of
M(R) from a knowledge of the amplitudes of the inten-
sity maxima. Note that applicationof this procedure
requires a prior knowledge of the bound state potential
V,(R) and the vibrational quantum number v of the initial
state. It also presumes that the observed intensity maxi-
ma have been correctly assigned to the appropriate ex-
trema of ¢,(£).

For v=1-13, Table I lists the ¢ values associated with
the maxima of the harmonic oscillator probability den-
sity [¢,(&) I’; the associated minima correspond to the

TABLE I. Positions ¢ of the extrema of the harmonie oscillator functions ¢, (¢) for v =1 to 13,
v=1 +1.000000
2 0.000 000 +1,581139
3 +0.602114 +2,034074
4 0.000000 +1.074613 +2.417686
5 +0.476 251 +1,475241 + 2.756 238
6 0.000 000 +0.881604 +1.828611 +3.062508
7 + 0,406 782 +1,239870 + 2,147 928 +3.344 197
8 0.000000 +0.767093 +1.563 978 +2,441238 +3.607717
9 +0.361030 +1.093513 +1.861876 +2.713 869 +3.8562560
10 0.000 000 +0.688554 +1.393 823 +2.138862 +2.9695569 +4.085 357
11 +0.327 945 +0,990182 +1.673 236 +2,398674 +3.211048 +4.306 716
12 0.000000 +0.630249 +1,271027 +1.935443 +2.644 063 + 3.440417 +4.518164
13 +0,302575 +0,911931 +1.534724 +2,183173 +2.877123 +3.659285 +4.720912
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FIG, 3. For the Br,; model problem of Sec. IV in which the
initial level corresponds tov =5, determination of the function
£ (E) from the observed intensity extrema positions.

nodes of ¢,(%) and are available elsewhere as the in-
tegration mesh points for the Gauss—-Hermite quadra-
ture formula, ® The energy dependence of £(E) is de-
fined by associating these £ values with the appropriate
maxima and minima of the observed transition intensity.
For the v = 5 model problem of Fig. 1 (see section IV},
this procedure is illustrated in Fig. 3 where the absorp-
tion intensity as a function of energy is plotted along

the vertical axis and the ¢ values associated with the
maxima of [¢5(¢) F are indicated by arrows on the hori-
zontal axis. Interpolation over the six points associated
with these intensity maxima clearly defines a smooth
£(E) function.

On a plot such as Fig, 3 it is a very straightforward
procedure to extrapolate to determine the energies as-
sociated with the harmonic oscillator function turning
points at £= + (2v+ 1)'/2 and - (20 + 1)!/%, Consideration
of Eq. (4) shows that these ¢ values correspond to A(E)
=0 and (v+ 1/2)7, respectively, and hence that the as-
socjated energies E, and E, are those for which the
final state turning point R(E) coincides with the known
initial state turning points b, and a,, respectively.

Thus, extrapolation of £(E) to £(E,) = —(20+ 1)}/ and
£(E,) = + (20 + 1)1? determines the two points (triangular
points in Fig, 3) V(b,) = E, and V,(a,) = E, which bound
the range of final state potential energy accessible to the
present procedure.

Once the smooth function £(E) is determined from the
mapping described above, its energy derivative may be
obtained and used to define the function obtained upon
differentiation of Eq. (4):

dA/dE= - (2v+ 1~ )Y ¥4t /dE)

R {E)
=sew/E? [ aR/E-v®IE. (o)

R((E)
The key to the derivation is then to apply an Abelian
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transformation to Eq. (10) by defining the integral
B
(E)= [ dE'(an/dE")/(E ~E' ]! (1)
E,
and substituting Eq. (10) into it, to obtain
E RABY)
(B) =4 2u/mY? [ aE’ (f * ar/{(E-E")
Ey RI‘E' )
x[E" ~ Vl(R)]}“z) . (12

By breaking the range of integration for R intotwo sub-
intervals,

(R(E"),RAE")]=[R(E"), b, ] -[RAE’), b,], (13)
this integral may be divided into two parts:
I(E) =I(E) ~I,(E) . (14)

The domains for the resulting double integrations may
be seen in Fig. 4. On interchanging the order of inte-
gration, the first of these integrals reduces to a simple
linear function of the desired turning points R,(E):

I{E) = %(2‘,‘/,72)1/2
? ’ ! -E"E' - 1/2
) j;,de fv1<de /{(E-ENE -V(R)]}

= (n/2)(2p/B)Y by ~R((E)] . (15)

This manipulation is essentially the same as those at
the core of other semiclassical inversion procedures,
including the RKR method of bound state spectroscopy.“
Application of this same procedure to I,(E) yields the
result

I,(E) = $(2p/BY)'?

" # 4 ’ ’ 1/2
X'/t‘z,,(s)dR ('[Ex dE' {(E-E")[E’ - Vi(R)]}

23

b2
=%(2ﬂ/ﬁz)”2/ dR(r1/2 + arcsin
RI(B)

x{1-2[E, ~ V,(R)//[E -V (R)]) , (16)

where E (R) = V((R) + E, ~ V,(R) is defined by Eq. (1) as
the energy for which R (E) = R. Combining Egs, (11)-

Ee

E

El
Ep ; 7
FIG. 4. Domains of integration associated with evaluation of

I(E) using the partitioning of Egs. (13)—(186).
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(16) then yields the final result of this derivation;
R(E) =} (b, + RAE)] -[2/n(2u/m?"?]

E
x[ dE'(dA/dE")/[E - E' V2
E

]

-(1/7) fb; )dR aresin{1 - 2[E, - V,(R)/[E - V,(R)]} .
Rx
(17

The first integral on the right-hand side of Eq. (17)
is readily evaluated” from the experimentally deter-
mined energy dependence of ¢(E) and A(E). On the other
hand, prior knowledge of the desired potential V,{R) on
the interval R, (E) =R < b, is required to define both the
value of R (E) [from Eq. (1)] and the integrand of the
remaining integral, However, for any E>E,, R.(E)
lies between b, and R,(E) {see Fig. 1). Thus, once
V(R) is known on some interval [R*, b,] for any R* <b,,
Eq. {17) may be used to extend the regionin which V(R)
is known inward to R,(E (R*)). Repetition of this proce-
dure will then progressively extend this interval all the
way to the initial state inner turning point, R = a,.

The only problem remaining is that of determining
V((R) on the initial interval [R*, by]. Fortunately, for
R* (and hence R,) close to b,, the second integral in
Eq. {17) is much smaller than the first one. Asaresult,
Eq. (17) may be used iteratively to determine R(E, (R*))
in a self-consistent fashion starting from virtually any
plausible initial estimate of its value. For the model
problems considered below, this initialization proce-~
dure converged in very few cycles, independent of the
choice of this initial value or of the initial energy step. 2
Moreover, this convergence may be facilitated by using
the known behavior of £(E) at the end points of the range
[E,, E,] to yield values of the first derivatives of V(R)
at those points. In particular, in the limit when E - E,,
Vi(R) and V,(R) become exactly linear on the interval
(R((E),R,(E)] and Eq. (10) yields the expression (where
primes denote differentiation with respect to R):

Vi1 - Vi) /V3 () ]2

= ~{2(m%/2u)(20 + V2 [~-dt/aEPVY?, E=E,,

(18)

which may be readily solved (numerically) for V{(b,).
An expression exactly analogous to Eq. (18) may be
similarly obtained for the potential derivatives at the
inner turning point R = a;.

As described above, the inversion procedure starts
at the extrapolated point E = E, = V((b,) and generates
turning points R,(E) on V{(R) at a sequence of increasing
energies until the inner turning point a, at the exirapolated
point E; = V,(a;) is reached. The errors in the resulting
potential are expected to be quite small, except perhaps
near the inner end of this range R(E) - a, where the in-
creasing magnitude of the potential slope and proximity
to the end of the range may sometimes amplify the effect
of cumulative error in the representation of the phase
information in the data. However, the fact that the end
point R((E,)=a, is already known (fairly accurately)
from extrapolation of the #(E) function, together with the
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constraint that the resulting potential (including this end
point) must always have positive curvature, allows the
calculations to be truncated before this error introduces
any problem. Interpolation between the calculated R(E)
points and the known point at R,(E,)) then yields a smooth
potential on the whole interval.

A technical point deserving comment here concerns
the numerical procedures used for evaluating the inte-
grals appearing in Eq. (17). The integrand of the first
integral clearly has an x"!/? singularity at the upper end
of its range of integration and goes to zero as x!/? at
the lower limit, while the integrand in the second inte-
gral dies off like x'% at both ends of the range of in-
tegration. These integrals should therefore be evaluated
using the Gauss—-Tchebyshev quadrature procedures
which take proper account of this limiting behavior.
In both cases, 16 point quadratures provide more than
enough accuracy for present purposes.

27

In practice, the main source of error for the inver-
sion procedure is uncertainties in the measured posi-
tions of the intensity extrema. Thus, appropriate steps
should be taken to ensure that the function (dA/dE’) is
a smooth function of energy. In the present work this
smoothing was accomplished by fitting the input phase
information to polynomials in £ and using numerical in-
version of the resulting expression to yield the desired
phase derivative values.

An annotated listing of a fortran program utilizing the
above inversion procedure may be obtained from the
authors on request,

IV. TESTING THE METHOD ON THE X !Z}(v=5)~'II,,
ABSORPTION CONTINUUM OF Br,

As a first test, the above method was applied to
synthetic data for visible absorption from the v =5 level
of the X '} state of Br, into continuum levels of the
1H1u state sharing the same dissociation limit. The po-
tential energy curves and spectrum from this case are
sketched in Fig, 1. The synthetic spectrum was gen-
erated by performing exact quantum mechanical calcula-
tions using the potential energy curves of Ref, 13; the
X -state potential was represented by the turning points
of Barrow et ql.?® while the 11‘I1u state potential was de-
fined by the function (with energies in cm! and lengths
in R)1
Vy(R) = 7654 x exp| - 4. 6368(R — 2. 3) — 0. 879(R - 2. 3)?]

(19)
expressed relative to the X-state dissociation threshold.
The only additional parameter required to define this
problem is the binding energy of the absorbing v =5 X-
state level, 14311, 38 cm-l, For the sake of simplicity,
this model spectrum was generated with M(R) =1 and
with the explicit frequency dependence omitted from the
absorption coefficient expression. 13

The input data taken from this synthetic spectrum were
the energies of the six absorption intensity maxima;
18257.8, 20088.2, 21773.2, 23609.8, 25790.9, and
28969, 6 cm™!, In Fig. 3 these points are plotted vs
the appropriate ¢ values taken from Table I, Extrapola-
tion at the ends of this range using (N -1)th order poly-
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nomials fitted to the first/last N points yielded E, esti-
mates of 30486-30 495 cm™" and E, estimates of 17562~
17574 em™!, for N= 3-6. These extrapolated values for
both end points lie slightly below the true points on the
model-problem potential: V(a,) = 30614 cm™! and

V(b)) = 17591 cm™!, Thus, while these extrapolations
are potentially one of the main sources of error in the
present method, in this case the resulting discrepancies
are small relative to the variation of the potential across
the range under consideration,

Since the input intensity information for this case was
numerically generated, it required no smoothing. Val-
ues of £(E) and d£/dE required in the evaluation of the
first integral in Eq, (17) [see Eq. (10)] were therefore
determined by piecewise polynomial interpolation over
the six intensity-maxima points; the resuits obtained
were essentially unchanged when the order of the poly-
nomials used in this ¢ interpolation was varied from 2
to 5. In determining R, (E) and evaluating the second
integral in Eq. (17), eight-point piecewise polynomials
were used to interpolate over the given initial-state
turning points, while four-point piecewise interpolation
was performed for V{{(R). As above, the results ob-
tained were insensitive to the order of the interpolating
polynomial as long as it was not too small,

For the Br; model problem, the reliability of the pres-
ent method is illustrated by Fig. 5. The solid curve
there corresponds to the differences between the values
of R,(E) generated by the inversion procedure and the
corresponding turning points of the “true” potential used
to generate the synthetic spectrum, The dashed curve
shows how the cumulative errors mentioned above tend
to exaggerate these discrepancies in the limit when
R/(E) - a, if the requirement that V,(R) be well behaved
(i.e,, have a positive second derivative) is not used to
truncate the calculation. The errors at the ends of the
range are simply the errors associated with the extrap-
olation beyond the input phase information to locate
the energies corresponding to £ =+ (2p + 1)V2,

In conclusion, the maximum errors in the Br, turning
points R (E) yielded by the present inversion procedure

‘l‘_l' T L T LN LD T
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-0.002F , ., e
¥ 22 23 24
) R,(E)/K b,

FIG, 5. Errors in the turning points R(E) of the potential
obtained on applying the present inversion procedure to the
synthetic Br, model-problem data.
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are less than 0. 5% of the turning point range considered,
by -a,~0,35 A. This is a very gratifying result, as
these discrepancies would not even be discernable on the
scale of the plot shown in Fig, 1.

V. APPLICATION TO A STRUCTURED EMISSION
CONTINUUM OF NaK

A. Application of the inversion procedure

A more challenging test of the present method is pro-
vided by the structured continuum emission into the
a®s* state of NaK which Breford and Engelke observed
subsequent to their laser excitation of the vy = 12 level
of the D 'II state.'® It has since been proposed that the
observed emission actually originates in the near reso-
nant v =13 vibrationallevel of the perturbing d 1, triplet
state.?® However, the present study first examines the
implications of the original'® identification of D (v = 12)
as the emitting level.

The model implied by this assignment of the observed
spectrum is summarized in Fig., 6. The excited D1l
state has been studied through absorption from the ground
X('=*) state, ™ and its potential energy curve determined
using the RKR inversion procedure. The resulting inner
and outer turning points of the y= 12 D-state level are
a;=3.46367 A and b, = 5.26475 A, The ¢°Z* state po-
tential which supports the final-state continuum levels
has a shallow van der Waals well and dissociates at the
same limit as does the ground state, 1¥:31:32 at an energy
some 15778, 4 cm™! below the v = 12 D-state level.

The existence of discrete emission into the bound
levels of the a(*z*)-state potential well complicates the
inversion problem. In particular, this discrete struc-
ture accounts for the high frequency end of the emission
Spectrum, so that only 10 of the 13 possible intensity
maxima lie in the continuum region above the a(®z*)-
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TABLE II. Frequencies, amplitudes,* and ¢ values® associated with the D 1II(:; =12)—~4%z* as-

signment of the structured emission continuum of NaK.

v/cm™ Amplitude ¢ v/emt Amplitude £

14 278 36 —-4,518164 15351 76 -0.630249
14426 0 -3.8897256 15389 0 - 0,314 240
14616 40 ~3.440417 15454 82 0.0

14 753 0 -3.020637 15501 0 0.314 240
14 860 40 —2.644 063 15564 121 0.630249
14 340 0 —2.279507 15603 0 0.947 788
15044 50 —1.935443 15652 142 1.271 027
15117 0 —-1.597683 15696 0 1.597683
15211 62 -1,271027 15743 163 1,935 443
15269 0 -~0.947788 (15 977%) . 5.0

iFrequencies and heights (arbitrary units) of observed intensity extrema taken from an expanded

version of Fig. 3 of Ref, 16.
bZeros, extrema and turning points of ¢;,(£).
“Determined from known RKR potential at b,.

state dissociation limit, In the absence of additional
information, this lack of knowledge of the intensity ex-
trema associated with the outermost part of the initial
state wave function would make the extrapolation to the
outer phase end point £(E,) = + (2v+ 1)!/? relatively long,
leading to increased uncertainty in the extrapolated value
of E,= V(b;). However, a reliable value of this quantity
is readily obtained by interpolating over the RKR turning
points for the bound portion of the a-state curve obtained
from an analysis of the discrete portion of this emission
spectrum, *! This approach yielded the energy E,

= Vy(ba) = ~ 15976.9 cm™! (relative to the emitting state)
and derivative V}{b,) = — 52 cm™! 4! for the potential at
t=+(2v+ 1)V/2=5, Use of the latter quantity in Eq. (18)
also yields a value for the phase derivative d¢/dE at

this end point,

In principle, the envelope of intensities of the dis-
crete transitions in the adjacent bound-bound portion
of the emission spectrum could be used to define ad-
ditional values of the £(E) function at energies below the
final state dissociation threshold. In the present case
two additional intensity maxima and three intensity
minima could be clearly assigned in this way. ¥ How-
ever, the accurate knowledge of E, and of the lower por-
tion of V,(R) provided by the RKR potential makes this
unnecessary, so the present analysis utilized only the
intensity extrema lying above the a-state dissociation
limit,

A second complication is the fact that the emission in-
tensity is actually proportional to

I,g= V4‘Mox|2 (20)

so that the positions of the observed intensity maxima
will in general be affected by both the frequency factor

»* and the R dependence of the transition dipole [see

Eq. (2)]. One way around this problem would be to base
the inversion procedure only on the intensity minima,

as their positions are not affected by these factors.
However, this would increase the length of the extrapola-
tions to determine the energy E,= V,(a;} corresponding
to HE)=-(2v+ 1)Y/? and make the resulting value less
reliable, so this approach is not desirable. Fortunate-

ly, these peak position shifts are usually fairly small
and may be corrected for iteratively. To this end, the
shifts may initially be neglected and the inversion pro-
cedure used to obtain initial estimates of V(R) and
M(R). Comparison of synthetic spectra generated from
this potential with and without inclusion of the v* and
transition moment factors then yields estimates of the
shifts, Subtracting these displacements from the ob-
served peak positions then yields “corrected” input
data, for use in the inversion procedure. In the pre-
sent problem, only the two lowest-frequency maxima
shifted significantly, the first by 24 cm™! and the second
by 5 em™!, and taking account of these displacements had
little effect on the resulting V{(R) and M(R) functions,

The observed positions and amplitudes of the 19 lowest
frequency (highest E) intensity extrema in the NaK emis-
sion spectrum are listed in Table II, *® together with the
£ values associated with the assignment of this spectrum
as emission from the D-state v = 12 level, Also shown
there is the energy E, = V(b,), corresponding to £=+35,
determined from the a-state RKR potential. In the in-
version, the E(%) function was represented by a third-
order polynomial fitted to the 19 experimental points
and constrained to be consistent with both the known
point E, = E(t = + 5) and the phase derivative at this point,
defined by Eq. {18).

The repulsive portion of the a(*s*)-state potential ob-
tained using the present method is plotted as a solid
curve in Fig. 6. The validity of the method is demon-
strated by the fact that the positions of the intensity
extrema of a spectrum calculated from this potential
(intensity curve in Fig. 6) agree extremely well with
the smoothed (by the polynomial fit) input peak posi-
tions (denoted by arrows in this figure). As can be seen
from Eq. (2), the transition dipole function values
M(R (v,,)) may be determined by comparing the ob-
served peak heights with values calculated from Eqs.

{2) and (20) while assuming M(R) = 1:
MR (Vng)) = Uovs(Vrnad 145 v enad 112 (21

The results obtained in this way, plotted in Fig. 7, are
well represented by the linear function (for R in 3):
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FIG. 7. Transition dipole function for NaK obtained from Eq.
(21) for the v =12 D(*1)-state assignment of the emitting level.

M(R) = M,[1+0.56(R-4.0)]. (22)

The net result of the inversion procedure is then sum-
marized in segment (a) of Fig. 8 where the calculated
spectrum implied by the inverted potential and transition
moment function (solid curve) is compared to the posi-
tions (smoothed) and heights of the observed intensity
maxima (vertical bars). The agreement seen there
provides convincing evidence of the reliability of the
present procedure,

For the sake of comparison, Fig. 6 also contains a
plot of the final state potential implied by the reflection
or delta-function approximation (dot-dashed curve).
The large differences between it and the present in-
verted potential (solid a-state curve) reaffirms the con-
clusions implied by Fig. 2, that the delta-function ap-
proximation is grossly inadequate for this system.

B. Physical significance of the resuits

It is clear that the present procedure has successfully
inverted the Breford—Engelke data to yield a repulsive
wall for the a(*z*) state potential. However, the dis-
crepancy between the lower portion of this inverted po-
tential (solid a-state curve in Fig, 6) and the inner wall
of the RKR potential for this state (dotted curve) raises
Serious doubts about the physical significance of this
result, In particular, the radial displacement of the
inner wall of this potential by up to 0. 15 A seems much
too large to be attributable to error in the RKR potential
or in the molecular constants from which it was ob-
tained.

To clarify this point and test further the sensitivity
of the emission spectrum to small changes in the re-
pulsive potential, the spectrum was recalculated® using
the modified repulsive potential (energies in cm~! and
lengths in A4)

Vi(R) = — 16090, 5 + 755. 25 xexp[ ~ 1. T3(R - 4.0) ] {23)

whose parameters were chosen so that it would both
smoothly join the upper end of the RKR curve and yield
approximately the correct position for the intensity
maximum at lowest frequency, This function is shown
as a dashed curve in Fig. 6, and the corresponding
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predicted emission spectrum is plotted in segment (b)

of Fig. 8. It is immediately clear that relatively small
displacements from the present inverted potential (solid
curve in Fig. 6) completely destroys the agreement
between the calculated and observed high frequency spec-
trum,

It therefore seems clear that a repulsive wall for the
a(3%') state which explains the structured emission con-
tinuum of Ref. 16 in terms of emission fromthe v= 12
level of the D(!II) state is incompatible with the a-state
RKR curve of Breford and Engelke.! The two possible
explanations of this inconsistency are error in the RKR
portion of the a(*z*) potential curve or error inthe as-
signment of the emitting state as the v = 12 of the D('1)
state. The latter seems the more likely. This con-
clusion was independently reached in Ref. 29 on the
basis of an analysis of the line intensities in the dis-
crete portion of the emission spectrum., Those authors
proposed that the emitting level be reassigned as v= 13
of a potential for the d(sl'li) state, and they devised a d-
state potential for which the calculated continuum and
discrete structure and intensities agreed with experi-
ment, However, since no independent information is
available for the d(*1,) state we could not apply the pres-
ent inversion procedure to this assignment.

VI. DISCUSSION AND CONCLUSIONS

The results presented in Secs. IV and V clearly show
that the present inversion procedure can readily extract
a unique and reasonably accurate potential curve and
transition moment function from appropriate experi-
mental data. Moreover, the computer program required
is fairly simple and is extremely cheap to use; for ex-
ample, generating 22 points on the inverted a(’z*) poten-
tial curve of Fig. 6 cost less than 3 s on a fairly slow
main frame computer (an IBM 4341),

200

100

(=)

Intensity/arbitrary units

{a)
100} g

150
vi103em!

14.0 145 155

FIG. 8. Comparison with observed intensity maxima (vertical
bars) of NaK emission spectra generated: (a) from the transi-
tion dipole and a~state potential (solid curve in Fig. 6) yielded
by the present inversion procedure, and (b) from a modified
a-state potential (dashed curve in Fig. 6) constrained to join the
innermost RKR turning points.
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In both of the sample applications described above,
the rotational quantum number was equal to zero.
However, this is in no way required by the present
method, and emission or absorption by a discrete
high-J level would be treated in exactly the same manner
described above except that the two potentials V((R) and
Vo(R) would include appropriate centrifugal distortion
terms J(J + 1) K?/2uR%. An apparent difficulty is the
fact that the given initial state usually emits/absorbs
into states corresponding to more than one J value.
However, for normal “symmetric” selection rules of
AJ = 11, or even AJ = 12, the positions of the intensity
extrema of the resulting spectrum would not differ sig-
nificantly from those associated with a pure @-branch
{ad = 0) spectrum, so treating such data as a @-branch
spectrum should introduce negligible errors, More
serious difficulties arise if the discrete initial state
absorbs or emits from a distribution of JJ sublevels.

If this occurs, it would be necessary to attempt to as-
sociate the resulting spectrum with some effective or
average initial J,

For the NaK system, the present analysis clearly
confirms the conclusion of Ref, 29 that the repulsive
curve implied by the v= 12 D(*1) -state assignment of
the emitting level is incompatible with the RKR curve
for the bound portion of the a state. As an alternate
approach to this problem, it appears that a modified
version of the present procedure could be combined with
assumed knowledge of the repulsive part of the a(*z")
state to yield the bound potential supporting the dis-
crete emitting level. This method will be discussed in
a future publication, %
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