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For single and double minimum model potentials, energy eigenvalues are calculated using the Froman and
Froman phase-integral approximations and compared with exact (numerical) quantum mechanical results.
For the double minimum potential, results are obtained both from the correct phase-integral quantization
condition including quantum effects near the barrier maximum (the o term) up to and including the fifth-
order approximation, and from the quantization condition with the o term neglected up to and including the
13th-order approximation. When the ¢ term is included, the third- and fifth-order eigenvalues are accurate
enough for all practical purposes, even close to the barrier maximum, but if the o term is neglected, the phase-
integral quantization condition breaks down near the barrier maximum, and this breakdown becomes more
dramatic with increasing order. This property is used to discuss the question of which order of phase-integral
approximation will give the optimum result. For a single minimum LJ(12,6) potential, phase-integral
cigenvalues are calculated up to and including the 13th-order approximation. In this case, the phase-integral
approximations appear able to yield much higher accuracy than can be practically obtained by quantal
calculations using existing numerical methods. The reliability of phase-integral eigenvalues at energies near
the dissociation limit is discussed, and a generalization of an earlier criterion for the onset of the breakdown of
higher-order phase-integral quantization conditions near the asymptote of a potential with an attractive

inverse-power 7 =¥ long range tail (where v > 2) is given.

I. INTRODUCTION

The efficient determination of accurate eigenvalues
for arbitrary single and double minimum potentials is
a problem of continuing interest. In principle, such
results may always be obtained by direct numerical so-
lution of the one-dimensional Schrddinger equation.''2
However, obtaining results of very high accuracy using
these “exact” methods is at best laborious, since it re-
quires the use of a very dense integration mesh or a
very large basis set. Moreover, for high quantum num-
bers or energies lying very near a potential asymptote,
the accelerating effects of accumulated truncation error
make these direct methods increasingly unstable.

An alternative approach to this problem is provided
by higher-order phase-integral techniques, which have
been attracting increasing attention in recent years,3™*
This type of approach is computationally much less ex-~
pensive than exact numerical methods, and high quantum
numbers or proxXimity to a potential asymptote or barrier
maximum introduce no additional computational difficul-
ties. On the other hand, although readily able in most
circumstances to provide results of extremely high ac-
curacy, the phase-internal method is in principle not
exact, So its region of validity should be very carefully
investigated. For example, the simple (uncorrected)
phase-integral quantization condition in either first- or
higher-order breaks down at a potential barrier maxi-
mum, while only the first-order quantization condition

3} John Simon Guggenheim Foundation Fellow 1979-80. Present
and permanent address: Guelph—-Waterloo Centre for
Graduate Work in Chemistry, University of Waterloo, Water-
loo, Ontario, Canada N2L 3G1,
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is stable at energies near the asymptote of a potential
with a realistic inverse-power long-range tail. Cor-
rection terms which prevent the breakdown in the former
case and evidence that the breakdown region is not phys-
ieally significant in the latter were presented previous-
ly." The present work attempts to clarify those results
and to delineate when (if ever) high-order phase-inte-
gral approximations skould no! be used.

For a double minimum potential, limited tests of the
accuracy of phase-integral eigenvalues for various or-
ders of the approximation were reported previously.”™®
However, only first-, third-, and fifth-order eigenval-
ues were calculated, ® and their precision was limited
by the relatively crude numerical methods then being
used. Moreover, the significance of those results was
difficult to ascertain because of the limited accuracy of
the numerical eigenvalues available for comparison, '®

In the following, Sec. II provides a brief description
of the methods used in the calculations of the quantal
and phase-integral results reported here. Section II
presents improved quantum mechanical eigenvalues for
the same model double minimum potential considered
earlier, "~*!® compares them with (2N +1)th order phase
integral eigenvalues for N=0-6, and examines the ef-
fect of the “o correction” to the phase integral quantiza-
tion conditions for N=0-2. This section also examines
the question of how one knows which value of the order
2N +1 yields the optimum result for a given case.

The unreliability of higher-order phase-integral quan-
tization conditions for levels lying very near a potential
asymptote was first suggested by comparison of quantal
eigenvalues with phase-integral results (of order 1, 3,
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and 5) for a particular LJ(12, 6) model potential.'® It
was then shown that this breakdown occurs for all po-
tentials with an attractive inverse-power ™ long range
tail for which y> 2, and a criterion for predicting the
onset of this behavior was devised which suggests that
usually no observable bound levels lie in this region, '*
However, the numerical result and the criterion were
only obtained up to fifth-order (2N+1=5). For this il-
lustrative model problem, Sec. IV extends the numeri-
cal results up to 13th order and the breakdown criterion
to seventh order. Section V then summarizes our con-
clusions about the utility of higher-order phase-integral
approximations in calculations using realistic single or
double minimum potentials.

(1. DESCRIPTION OF METHODS USED

For both single and double minimum potentials, the
problems considered can be described by the one-di-
mensional Schrodinger equation in the dimensionless
form

2.
B [E-Ta)y -0, M
where B, =2u€ (x,)?/#* is a dimensionless potential
strength parameter, !’ €, and x, are appropriately chosen
energy and length scaling parameters, z=x/x, is the
dimensionless distance coordinate, and E = E/ €, and
Viz)=V(x)/ €, are the reduced eigenenergy and potential
energy function. Note that throughout this paper, a bar
over the symbol for a variable indicates that it is di-
mensionless, with energies and lengths scaled by €, and
xs, respectively.

For the single minimum potential considered here,
V(x})—~ ag x—0 and V(x)~0 as x~=, so the allowed
eigenvalues are negative and correspond to wave func-
tions satisfying the boundary condition $(z)—~ 0 at both
z2—=0 and z—=., The double minimum potential con-
sidered is symmetric about a barrier maximum located
at x =0, so the allowed eigenstates all correspond to
#(2)~0 as z - + = and either dy(z=0)/dz=0 or y(z=0)=0;
the former condition yields the even solutions (labeled +)
and the latter the odd solutions (labeled -).

A. Calculation of quantum mechanical eigenvalues

For either single or double minimum potentials, Eq.
(1) may be readily solved using standard numerical
techniques’?; the results reported below were obtained
using a program based on the Numerov integration al-
gorithm of Refs, 2. This method is insensitive to prox-
imity to a potential barrier maximum. However, at very
high energies or for potentials with very steep walls, the
small integration mesh which must be used if results of
high accuracy are to be obtained makes the calculations
relatively time consuming and requires the storage of
relatively large arrays. For example, achieving the
eight-decimal place accuracy of the eigenvalues pre-
sented in Sec, III required a potential array size of
20000. Calculations for levels lying very near a poten-
tial asymptote also require the use of very large ar-
rays, '° not because of a small mesh size requirement,
but rather because the slow decay of the long-range tail

4347

of the wave function requires the use of a very broad
range of integration.

B. Calculation of phase-integral eigenvalues

For a single minimum potential, the phase-integral
quantization condition defines the (2N +1)th order eigen-
values as the energies E which yield nonnegative integer
values of v when substituted into the equation

veb=a(B/n=(/n) 3 @), @)
where
a(zml)(E):Re{_;_ f dzq(Zn'Pl)(z)}
rcx
=Re {_;_ f dzp(Zm-l)(z)} . (3)
Ty

The functions ¢®"*"(z) are known up to very high or-
ders, 38181 514 the functions p ®**'’(z) are obtained in
a nonunique way upon integration by parts. Making use
of the arbitrarily chosen length and energy scaling fac-
tors introduced above, x, and €, the usual form of
p%* D (z) corresponds to

pM2)=VB,[E - V(2)]'/2 . (4)

For n=0-3 explicit expressions for 3%"!(z), as func-
tions of [E - V(z)] and its derivatives with respect to z,
are listed in the Appendix. The contour I', appearing
in Eq. (3) is a path in the complex plane which encloses
and does not cross the cut on the real line running be-
tween the two classical turning points z; and z, associ-
ated with a given reduced energy E, where V(z,)=E
= V(Zz) .

For a symmetric double minimum potential, the quan-
tization condition analogous to Eq. (2) is’

v+%=a(E)/7— o(E)/n+(1/2 m)arctan{fexp[~ K(E)]}, (5)

where

K(E)=2°: KD =(1/2) fr dz{i: q‘z"’”<z)}
n= I'e n=
Y (2n+1)
=(i/2) 5{ az {}i » <z>} (6)

and

O.(E):xj O.(Zn-rl)(E) (7)

is the barrier maximum phase correction (see below),
while o(E) is a contour integral of the same type as that
appearing in Eq. (3). At energies below the barrier
maximum, the contour I', associated with «(E) encloses
the classically accessible region in one of the wells in
exactly the same manner as in the case of the single
minimum potential, while I'y is an anlogous contour
about the classically inaccessible potential barrier re-
gion whose direction is chosen so that K(E) will be posi-
tive at energies below the barrier maximum. At ener-
gies above the potential barrier maximum, the contours
I'y and I'; enclose the transition points in the manner
described in Refs. 8 and 9.
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The upper sign preceding the last term in Eq. (5)
yields the symmetric (denoted +) solutions and the lower
sign the antisymmetric ones (denoted —). Note that the
definition of the vibrational quantum number v differs
in Egs. (2) and (5). In the former its value indicates
the total number of nonboundary wave function nodes,
or the total number of levels lying below the one in ques-
tion. In contrast, in Eq. (5) it indicates the number of
nonboundary wave function nodes lying on each side of
the barrier maximum, or the number of lower levels of
the same (+ or -) symmeiry.

A family of recently developed techniques!!~!* allows

the contour integrals appearing in Eqs. (3) and (5) to be
evaluated readily to virtually any desired accuracy,
solely from a knowledge of the potential and its deriva-
tives on the real line. However, while extremely effi-
cient and easy to use for calculations in the lower or-
ders (say, 2N+1, 3, or 5) this approach becomes in-
creasingly complicated with increasing N. An earlier
numerical approach, which is equally reliable, is close-
ly related to the analytic methods for evaluating such
integrais®™® in that it involves explicit integration along
appropriately chosen contours in the complex plane.
The care which must be taken in choosing the contour
makes the way in which this “complex plane” quadra-
ture method is applied somewhat potential dependent,
but once the contour is chosen the calculations are es-
sentially the same for all orders. This property makes
the method much more convenient to use for very high
order calculations on analytic model potentials. The
“complex plane” quadrature method was therefore used
to obtain the phase-integral results presented below.
However, in other contexts, the potential independence
and ease.of programugine of the “real line” quadrgture
methods of Refs. 11-14 make them particularly useful
in low orders.

In both first- and higher-order approximations, in-
clusion of the phase correction ¢(E) is essential for can-
celling the divergence of the integral a(E) at a potential
maximum. »®*%® The comparison equation technique has
yielded explicit expressions for the first three contri-
butions to o(E), ¢’, ¢, 0®, in terms of the barrier
integral K(E) and its components [see e.g., Egs. (10)
of Ref. 9].

lIl. EIGENVALUES OF A SYMMETRIC DOUBLE
MINIMUM POTENTIAL

As in previous studies, "™ we use here as an illustra-
tive example a potential consisting of a harmonic oscilla-
tor with 2 Gaussian barrier in the middle:

V(z)=22/2 +9e™% | (8)

where the energy scaling parameter, defined as the har-
monic oscillator frequency factor € = hvy, combines with
appropriate mass and length scaling parameters to yield
a dimensionless potential strength parameter of B, =2.
The present improved (relative to Ref. 16) quantum
mechanical eigenvalues for the first 32 levels of this
system are listed in Table I; they were obtained using

a numerical integration mesh of 4z =0.001 and are be-
lieved to be accurate as quoted.
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TABLE I. Reduced quantum mechanical eigenvalues EQM of the
double minimum potential of Eq. (8) for B,=2; the barrier maxi-
mum lies at E =9,

Symmetric (+) Antisymmetric (~) Splitting

v=0 3.07539467 3.078507 24 0,00311257
1 5,13830028 5.164373 05 0,026 07277
2 6. 971 396 20 7.098397 58 0,127001 39
3 8. 576 20968 8,967 875 86 0,39166617
4 10,12233839 10.824216 73 0,701 87834
5 11, 82979866 12,695538 86 0, 865740 20
6 13,661 90570 14,58971565 0,927809 95
7 15,551 72265 16,504 565 98 0,95284333
8 17,470536 85 18,435544 73 0. 965007 88
9 19,406 52761 20.37862797 0,97210036
10 21,35399367 22,33081965 0, 976 825 97
11 23,309 72941 24, 28998370 0. 980254 29
12 25, 271 720 00 26, 254596 23 0, 982876 23
13 27,238 60083 28, 22355217 0, 984951 35
14 29, 209 39964 30,196 033 27 0, 986 633 63
15 31,18339832 32,171 42076 0.98802244

The phase-integral eigenvalues calculated for com-
parison with the results in Table I are converged to at
least 11 decimal places, and may be obtained on re-
quest.?' Results were obtained in orders 2N+1=1, 3,
and 5 by summing (N+1) terms in the sums defining each
of @, K, and ¢ in Eq. (5) (and are referred to as “with-
¢” values), and also in all orders (2N+1) from 1 to 13
with o(E) neglected in Eq. (5) (referred to as “no-¢”
values).

For the 19 lowest levels of the above potential, the
errors in the phase-integral eigenvalues are plotted
Zoiinstethoyrantainlona) aeegiomin EiSun v T2
round points joined by solid lines correspond to the no-
o eigenvalues, while the triangular points joined by
dashed lines are the errors in the with-¢ eigenvalues,
Solid points correspond to positive discrepancies (E a1
> EQM) while open points indicate that this difference is
negative. The integers labeling the various curves in-
dicate the orders 2N +1 of the associated phase-integral
results. Note that the potential barrier maximum for
this system lies at the energy E=9.

111e

The results in Fig. 1A clearly confirm the fact that
inclusion of the ¢(E) corrections completely removes
the difficulties associated with proximity to the barrier
maximum.®?® The functions c®*! of Ref. 9 are based
on the assumption that the classical turning points on
the barrier are well isolated from other classical turn-
ing points of the system. However, when the energy
levels lie far below the top of the barrier, the turning
point configuration is very different from that for an
isolated barrier. This is the reason that inclusion of
the @™V functions of Ref. 9 does not markedly improve
the results for the very lowest levels. In any case, in-
clusion of the o(E) function clearly makes the double
well phase-integral quantization condition perfectly sta-
ble near the barrier maximum, and gives the relatively
low order (2N +1=3 or 5) eigenvalues an accuracy more
than sufficient for most applications.

It is well known that the phase integral approximations
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FIG. 1. (A) errors [E,y,y —Eqy! in

(2N +1)th order no-o (round points joined
by solid lines) and with~o (triangles
joined by dashed lines) phase-integral
eigenvalues for the B, =2 reduced doubles
minimum potential of Eq. (8), plotted vs
the reduced energy E. The integer as-
sociated with each curve is the order of

approximation. Open points correspond

10g| A2y - Ao

‘—\?‘.\‘ii_\":sc_
\\\.7

to negative differences and solid points

to positive ones. (B) The (2N +1)th or-
der contributions to the right-hand side

of the quantization condition (5), plotted
vs the reduced energy E,y_4. Round points
joined by solid lines correspond to no-o
calculatiors and triangles joined by dashed
lines to with-o results, The integer as-
sociated with each curve is the order of
approximation,

S

are asymptotic, and the fact that the no-o eigenvalues
for a given level initially improve but eventually get
worse with increasing order provides a dramatic illus-
tration of this asymptotic nature, In the bowl of a sin-
gle-minimum potential this reversal does not occur un-
til very high orders (see Sec. IV, below). Thus, the
early breakdown of the no-o results due to the barrier
maximum is particularly interesting, since it makes
this behavior accessible to study. In particular, it al-
lows us to test a simple criterion for predicting when
the optimum eigenvalue for a given level has been at-
tained and still higher-order calculations should not be
trusted.

As described above, increasing the order of the phase~
integral approximation applied to any given level sys-
tematically improves the calculated eigenvalue until a
critical order 2N +1 is reached, after which further in-
creases in order make the results worse. One way of
ascertaining when this optimum order has been achieved
is simply to compare the magnitudes of the overall con~
tributions to the right-hand side of the quantization con-
dition (5) associated with each order, To this end, it is
convenient to write the (2N + 1)th order quantization con-
dition of Eq. (5) in the form

(9)

The difference AY=|A,y,(E) - Ayy(E)| then indicates
the magnitude of the net (2N + 1)th order contribution to
the phase at a given energy E. Figure 1B plots this
quantity against the reduced energy E,,,;. Round points
joined by solid lines correspond to no-o¢ results and tri-
angles joined by dashed lines correspond to with-o re-
sults. As in Fig. 1A, the integer label for each curve in-
dicates the order of approximation. Comparison of Fig.
1A and Fig. 1B shows that minimization of A is a rea-
sonable criterion for predicting the onset of breakdown
of the high-order phase-integral approximations.

1
v+3 =8y (Eppa1) -

IV. EIGENVALUES OF A SINGLE MINIMUM
POTENTIAL

A. lllustrative results for a model problem

Following previous work!®**!"2® the model potential

used for the illustrative calculations reported here is

an LJ(12, 6) function
V(z)=2"1% -2z (10)

corresponding to a dimensionless well capacity param-
eter'® of B,=10* [cf. Eq. (1)], where the energy and
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TABLE II. Reduced quantum m_echanical eigenvalues EQM and their differences with the corresponding (2N +1)th or-
der phase integral eigenvalues E,y, for the 24-level LJ(12,6) potential characterized by B ,=104.

1012 (B —Equy)

v Equ (2N +1) =1 3 5 7 9 11 13
0 — 0. 941 046 032 004 - 85841 203 5118 -1 0 0 0 0
1 — 0,830 002082986 - 82491731 5 206 0 0 0 0 0
2 —0.727645697520 — 79 086 253 5 296 -1 0 0 0 0
3 —0,633692951 882 — 75625016 5391 0 0 0 0 0
4 —0,547852 043 329 - 72108638 5491 0 1 1 1 1
5 —0.469822910170 -68538172 5599 0 1 1 1 1
6 — 0,399 296 840 304 —64915186 5716 0 1 1 1 1
7 -0.335956 071 148 — 61241 847 5848 0 1 1 1 1
8 -0,279473385 017 -57521 020 5998 0 1 1 1 1
9 —0.229511 705 460 - 53756 368 6174 0 1 1 1 1

10 —0,185 723701 797 — 49952467 6 384 0 1 1 1 1

11 —0,147751411 298 -46114913 6640 -1 1 1 1 1

12 ~0.115 225 890 999 - 42250437 6 960 -1 1 1 1 1

13 —0,087766 914 229 -38367009 7365 -2 1 1 1 1

14 — 0,064 982730 497 -34473920 7889 -3 1 1 1 1

15 - 0,046 469 911 358 - 30581 835 8579 -4 0 0 0 0

16 —0,031813309316 - 26702793 9507 -8 1 1 1 1

17 ~ 0, 020586161 356 -22850141 10785 -11 0 0 0 0

18 -0.012350373 216 -19038338 12610 -18 0 0 0 0

19 -0, 006657024 344 -15282616 15351 -34 0 0 0 0

20 —0.003 047136 244 -11598316 19805 -5 -1 1 1 1

21 - 0,001 052747695 ~ 7999430 28101 - 222 -7 2 0 0

22 —0.000198340301 —~4493177 48423 -1235 -89 55 —18 -1

23 —0.000002696 883 -1021 226 158812 - 70317 19692 276925 - 760611 a

%In 13th order this level does not exist,

length scaling parameters €, and x, are the depth and
position of the potential minimum. One recent paper15
reported 12 digit quantum mechanical eigenvalues for
this system and compared them to first-, third-, and
fifth-order phase-integral energies, while a second®®’
extended this comparison to seventh order. In the pres-
ent work, these phase-integral results are extended to
13th order [N=6 in Eq. (2)].

Table II lists the quantum mechanical eigenvalues for
this system [corrected according to Ref. 15(b)], to-
gether with the errors in the corresponding phase-in-
tegral energies; tabulated values of the latter, given to
13 decimal places, may be obtained on request.?' It is
interesting to note that for a number of levels these
quantal eigenvalues differ slightly from the converged
high-order phase-integral results. In particular, for
each of v=4-14, 16, and 20, the phase-integral eigen-
values obtained in all orders from 9 to 13 are consis-
tently 1x107*2 higher than the previously reported!®
quantal values. Since this discrepancy is orders of
magnitude larger than the differences among the highest-
order phase-integral energies of order 9-13,% it seems
clear that it corresponds to small errors in the previous-
ly reported' quantal values. This observation is not
surprising, since it was estimated in Ref. 15 that the
errors in the latter could be as large as +0.5x107'2,
However, in view of the very substantial effort which
had to be expended to achieve even that degree of con-
vergence, the existence of these small errors further
illustrates the fact that extremely high accuracy is much
easier to achieve using high-order phase-integral ap-

proximations rather than direct (numerical) quantum
mechanical methods.

The results in Table II are consistent with the con-
clusion of Ref, 15 that, with the possible exception of
the one level lying closest to dissociation, high-order
phase-integral approximations are reliable and converge
rapidly with increasing order for all levels of a realis-
tic single minimum potential. For this model problem,
the asymptotic nature of the phase-integral approxima-
tions manifest itself only for the last bound level, v =23,
for which case the optimum result is obtained in seventh
order. The manner in which the accuracy of the phase-
integral eigenvalues for this level changes with increas-
ing order is analogous to the behavior of the no-o re-
sults in Fig. 1A for levels lying near the barrier maxi-
mum of a double minimum potential.

B. Near-dissociation behavior and breakdown of the
quantization condition in high order

As was pointed out in Ref. 15, values of the a®™!)(E)
integrals for levels lying in the upper portion of a real-
istically anharmonic single minimum potential depend
mainly on the nature of the integrand in the neighborhood
of the outer turning point. In this long-range region,
virtually all atomic and molecular interaction potentials
have the limiting form

V{x)~D-C,/x" . (11)

As described in Ref. 15, substituting the potential ap-
proximation of Eq. (11) into Eq. (3) allows the deriva-
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TABLE II. Values of the @' (v) constants of Eq. (14)—(17).

v alh o a® all

6 -0.646 77739 —0,204484 89 0, 09843750 —-0,11286502

5 —-0.83526519 -0,22772216 0.059773 27 0.0

4 ~1.19814023 - 0,273131 00 0.02730137 0.025190 28

3 - 2.24050260 —0.40477511 0.0 0.01009952

tion!®# of simple analytic expressions (identified herein  predicting the width of the interval near dissociation

by the subscript «) which characterize the limiting near-
dissociation behavior of Eq. (3) for various values of .
In this case, Eq. (2) takes on the limiting form

(v+dy° =<vo+%>+(1/n)f; FE)/maiD (g

where the independent variable is the dimensionless
quantity

y=B, 1/ [D-E)e+ 13)

and the bars on the variables C,, D, and E indicate, as
above, that energies and lengths are scaled by €, and x,,
respectively; the quantity v, is an integration constant,
which for »>2 is the (noninteger) first-order value of
the vibrational quantum number at the dissociation limit,
while the constants 2"V (y) are given by?

al’(v)=-[1/(v-2)IT(1/2+1/v) T(1/2)/T(1 +1/v), (14)

ad(w)=-[(v+1)/24]T(1/2 - 1/v) T(1/2)/T(1 = 1/v) ,
(15)

() =[(v +3) (v + 1)(v - 3)(2v - 3) /96002
xI'(3/2-3/v)T(1/2)/T(2-3/v) , (16)
@) == [(v+5) (v +1) (v - 5) (2v - 5) (240° - 2% - 11Ty

+139)/125152,°]xT'(5/2 - 5/v) T (1/2)/T(3 - 5/v) ,
amn
where I'(a) is the gamma function.? For the values of
v associated with most long-range molecular interac-
tions, numerical values of a %"V (y) are listed in Table

II1.

For levels lying near dissociation, the sign of each of
the higher-order (i.e., n>0) @®"!)(y) constants appear-
ing in Table III is the negative of the sign of the change
in the phase-integral eigenvalue when this term is added
to the right-hand side of the quantization condition of
Eq. (2). The fact that this sign does not simply alter-
nate with increasing order was not evident in Ref. 15,
and it explains the apparent irregularities in sign of the
differences (E, - Eqy) for »=20-23. Thus these differ-
ences do not reflect error in Egy for these levels, as
was suggested in Ref, 22, but merely the facts that
a®(v =6) has the same signs as @&"(v = 6) and that for
v =23 the optimum order is 2N+1=17.

As was pointed out in Ref, 15, the singular behavior
of the higher-order terms in Eq. (12) as E-~D (i.e. ,
as y-0) means that higher-order versions of the phase-
integral quantization condition Eq. (2) breaks down for
energies sufficiently near the asymptote of an interac-
tion potential with a realistic inverse-power long-range
tail. In that work, !5 a simple criterion was devised for

where phase integral approximations of higher-order
should not be used. However, the results in Table II
clearly indicate that the size of the energy interval
where the phase-integral eigenvalues are not very ac-
curate depends on which order of approximation is being
congidered. For example, while the criterion of Ref.
15 suggests that higher-order approximations may be
used for the v =23 level of the model LJ(12, 6) potential
considered above, the results in Table II show that this
is not true for orders higher than seven,

Criteria for defining the width of the breakdown in-
terval associated with any particular order may be
readily devised using Eqs. (12)~(17) and the still high-
er-order analogs of Eqs. (14)~(17). In particular, in
the spirit of the discussion of Sec. III, a lower bound to
this interval in the (2N +1)th order could be defined as
the energy at which |a @1 (E)| = |a®¥*3(E)|. A more
conservative criterion would be obtained on replacing
the phases in this expression by their derivatives with
respect to energy. This leads to the prediction that ap-
proximations of order higher than 2N +1 should be used
only when?

[D - E]> | (2N +1) a8"*3)/[(2N - 1) @&**)) B,(T,2/*]|*/ v® |

(18)
However, in most practical applications to molecular
interactions, the accuracy achieved in third order is
movre than enough to account for the experimental quan-
tities. Thus, the N=1 version of Eq. (18) or the gen-
eralized criterion of Eq. (29) of Ref. 15 suffices for
predicting when phase-integral calculations should be
restricted to first order.

C. Error estimates for phase-integral eigenvalues

Throughout the following discussion, the energy and
length scaling factors €, and x, are set equal to the
depth and position of the potential minimum, so that the
quantity B, can act as a dimensionless potential strength
parameter. For realistic intermolecular potentials,
this definition of €, and x, means that the magnitude of
the reduced potential constant C, [see Eq. (11)] usually
lies in the range 0.2 5C,$ 5.2" For reduced binding en-
ergies [D - E] which are not too small?® (and n values
which are not too large), the Eq. (13) definition of y then
shows that in the near-dissociation region, the magni-
tude of the (27 + 1)th order contribution to the right-hand
side of the quantization condition is largely governed by
the factor 1/(B,)"1/2,

This dependence on B, also occurs at energies far
from dissociation, In particular, consideration of Eq.
(3) and Egs. (Al1)~(A4) from the Appendix shows that the
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(2n +1)th order contribution to the phase integral ap-
pearing in the quantization condition of Eq. (2) may be
written as

a(zml)(E)=a(2n*1)(i)/(31)n~(1/2) , (19)

where a®*1(E) is a dimensionless contour integral de-
pending solely on the reduced quantity [E - V] and its
derivatives with respect to z. The form of their inte-
grands and the analogy with the near-dissociation results
described above suggests that (again, except for ex-
tremely high order) at any E the values of these reduced
integrals @®"*!)(E) are roughly independent of n. Thus,
in general the magnitudes of the higher-order contribu-
tions to phase integrals appearing in the quantization con-
dition decrease by a factor of 1/B, with each successive
order. %

Realistic potentials which support more than one or
two bound levels typically correspond to B,>100. In
view of the above, the approximation

d(v +3)/dE= (1/7)[da"(E)/dE]

should be fairly accurate and a resonable estimate of
the errors in the (2N + 1)th order eigenvalues is given by

8Epyy == ¢V N(E)/[da V) (E)/dE]
- —(2N+3)(E)/[da(1)(E)/di]/(B‘)mi .

The conclusion that a®¥*1)(E) does not vary drastically
with N then leads to the simple prediction that (for en-
ergies not too near dissociation®):

l GEZN"'I ‘ = ﬂE)/(B')N'PI ]

where the function A(E) varies slowly with energy. Egqua-
tion (22) correctly predicts the magnitudes of the errors
in the first-, third-, and fifth-order eigenvalues of the
B,=10* LJ(12, 6) potential of Table II, and its utility is
further confirmed by the results for the other potentials
considered in Refs. 21.%® More generally, Eqgs. (21)
and (22) provide a quantitative basis for the widely ac-
cepted belief that for “weaker” potentials (i.e., those
corresponding to small B, values), the phase integral
quantization condition must be taken to relatively higher
order for a given level of accuracy to be attained.

(20)

(21)

(22)

In the near-dissociation region, Eq. (21) takes on the
limiting form

o _ - [2V/(v—2)|3i2”'3’(v;
GE';NH—&” (V)(B,) + (cv) n+ad) U[D_E] - +1)/v

For the special case of v=6 long-range potentials [see
Eq. (11)] for which Cg=2, such as the family of LJ(12, 6)
functions, Eq. (23), and the results in Table III yield
the following error estimates for first-, third-, and
fifth-order eigenvalues:

(23)

0E; =—0.7528 [D-Et/%/B, , (24)
oET =0.3229/{(B,?[D-E}'3}, (25)
6Ey =0.3298/{(B,°[D-E]} . (26)

Figure 2 compares the predictions of Eqs. (24)-(26)
(solid straight lines) with the actual eigenvalue errors
for both the B, =10* LJ(12, 6) potential of Table II (round
points) and the B, =900 LJ(12, 6) potential of Refs. 22
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FIG. 2. Dependence of the errors 8E,y,; in the (2V +1)}th order
reduced phase-integral eigenvalues on the reduced binding
energy [D —E], for various LJ(12,6) potentials. The straight
lines correspond to the predictions of Eqs. (24)-(26) while the
round points show the actual results of Table II for B (=10% and
the triangles show the results for the B, =900 potential of

Ref, 22,

(triangular pointg).29 The convergence of the points to
the lines as E~ D demonstrates that, as expected, the
error estimates of Eqs. (23)-(26) become increasingly
accurate in this limit, Moreover, the relatively small
divergence of the points from these lines even at low
energies demonstrates the semiquantitative validity of
Egs. (24)-(26) for all levels of any LJ(12, 6) potential.
However, a more general point is illustrated by the
agreement between the round and triangular points for
each order, It is that, in each order, errors in the
phase-integral eigenvalues of all potentials having the
same reduced form would yield a single smooth curve
on a diagram such as Fig. 2. Fitting an empirical
function to this curve [preferrably one which builds in
the known limiting behavior of Eq. (23)] would then yield
a simple analytic estimate of the corrections required
by all eigenvalues of that order for the given type of re-
duced potential. An approximate procedure of this type
which did not build in the correct limiting behavior at
dissociation was introduced by Cole and Tsong® in their
study of the LJ{(9, 3) potential.

V. DISCUSSION AND CONCLUSIONS

For double minimum potentials, the present study
clearly demonstrates that phase-integral calculations
of any order which do not incorporate the comparison
equation phase correction term o E) have no predictive
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value close to a barrier maximum. On the other hand,
proper inclusion of this correction makes the phase-in-
tegral quantization condition perfectly stable close to
the barrier maximum and gives even the third or fifth
order eigenvalues more than enough accuracy for most
applications. Indeed, the only practical limitations on
the accuracy obtainable in this way arise from the fact
that o corrections have only been derived for the first-,
third-, and fifth-order phase-integral approximations.

While of little use for making practical predictions
near the barrier maximum, the no-c calculations for
the double minimum potential of Eq. (8) do provide a
nice illustration of the asymptotic nature of the phase-
integral method. Moreover, examination of these re-
sults shows that if the magnitude of the (2N + 3)th order
contribution to the quantization condition phase at a given
energy is greater than that for the (2N + 1)th order con-
tribution, calculations of order higher than (2N +1)
should not be pursued. Thus, this simple test appears
to offer a reliable procedure for locating the point at
which further increases in order will lead to less ac-
curate phase-integral eigenvalues.

For realistic single minimum potentials (i.e., those
having an inverse-power long-range tail), the asymptotic
nature of phase-integral method appears to show itself
only at energies extremely near the potential agymptote.
At energies outside this region, errors in phase-inte-
gral eigenvalues decrease by a factor of roughly 1/B,
with each successive order, so virtually any de-
sired accuracy can be achieved using phase-integral
methods. Moreover, the simple analytic expressions
which characterize the limiting near-dissociation be-
havior of the various contributions to the quantization
condition provide a simple and reliable way of predicting
the width of the region where the use of higher-order
phase-~integral approximations cannot be trusted. Ac-
cording to the analysis of Ref. 15, at most one vibra-
tional level lies in the region near dissociation where
the quantization condition cannot be used in higher or-
der. One other general conclusion, illustrated by the
results in Fig. 2, is that simple empirical expressions
can be devised which accurately predict the leading
higher-order corrections to the phase-integral eigen-
values of all potentials having the same reduced form.,

For both single and double minimum potentials, cal-
culations using the phase-integral method are much less
expensive to perform and do not encounter the practical
array Size (or basis size) and integration mesh limita-
tions which plague exact (numerical) quantal calculations
at high energies or for very steep potentials. For sin-
gle minimum potentials they also appear readily able to
yield much higher absolute accuracy than can be prac-
tically obtained by quantal calculations using existing
numerical methods, while for double minimum poten-
tials the accuracy provided by the quantization condition
in first, third, or fifth order ‘with the ¢ correction in-
cluded is considerably greater than is required for most
purposes. Thus, for most practical purposes, the use
of the phase-integral method should be thought of, not
as an approximate approach to the solution of the Schré-
dinger equation, but rather as a particularly efficient
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and reliable procedure for obtaining results of virtually
any desired accuracy.
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APPENDIX

Expressions for the quantities ¢'***!’(z) appearing in
Egs. (3) and (6) have been given earlier®~%181% for 3]
orders of approximation of practical interest. For n>0
the quantities p®*!(z), which in general are simpler
than ¢®™!(z), can be obtained after one or more inte-
grations by parts. On defining V*(z)=d'V(z)/dz’, the
first few integrands in Eqs. (3) and (6) may be written as

PM(2)=(B,) 2 [E- V()2 , (A1)
5®2) =1/[48(B) 2] VP(2)/[E - V2)P/2, (A2)
5%(2)=1/[1836(B,)*/?]

x{5 P(z) V(2) - 1[VA(2)FY/[E- V(2)]2,  (43)

pM(z)=-1/[2'%(B,)*/2] {5005 [V*(2)F/[E - V(2)]!"/2
- 3696 [V(2) PR(2)B/[E - V(z)]"®/2

- 640 [P(2)F/[E - V(2)]'/ % + 128[P(2) F/[E - V(2) /2 .
(A4)

Note that the quantities 5®™!(z) in Eqs. (Al)-(A4) are
not unique expressions for the integrands in Eqs. (3)
and (6), in the sense that the quantities of practical in-
terest are their integrals along a closed contour, and
they may be transformed into a variety of other equally
correct forms by integration by parts. Expressions
analogous to Eqs. (Al)-(A4) can be generated for orders
higher than seven. However, the numerical evaluation
of the phase integrals by explicit contour integration in
the complex plane, which is the more appropriate com-
putational method for use in such high order, does not
require the integrands to be reduced to this form, so
that the considerable effort required to do so was not
made at this time. Unfortunately though, this prevents
limiting near-dissociation behavior coefficients analo-
gous to those of Eqs. (14)-(17) from being obtained for
orders 2N+1>17,

!see, for example, (a) B. W. Shore, J. Chem. Phys. 59, 6450
(1973); (b) F. L. Tobin and J, Hinze, ibid, 63, 1034 (1975);
(¢) D. G. Truhlar and W, D. Tarara, ibid. 64, 237 (1976);
{(d) B. R. Johnson, ibid. 67, 4086 (1977), and references ther-
therein,

Ha) J. W, Cooley, Math, Comput. 15, 363 (1961); (b) J. K.
Cashion, J. Chem. Phys, 39, 1872 (1963); (c) R. J. Le Roy,
University of Waterloo Chemical Physics Research Report
CP-230 (1983).

N. Frdman, Ark. Fys. 32, 541 (1966),

N. Froman, Ann, Phys, (N.Y.) 81, 451 (1970),

J. Chem. Phys., Vol. 79, No. 9, 1 November 1983

Downloaded 13 Mar 2004 to 129.97.80.195. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



4354

5N. Fréman and P, O. Froman, Ann. Phys. (N.Y.) 83, 103
(1974),

N. Fr8man and P. O. Fréman, Nuovo Cimento B 20, 121
(1974).

"™N. Frdman, Ark. Fys, 32, 79 (1966),

8N. Froman and U. Myhrman, Ark. Fys. 40, 497 (1970).

®N. FrSman, P, O, Fréman, U. Myhrman, and R. Paulsson,
Ann, Phys, (N.Y.) 74, 314 (1972).

ton, Froman, Semiclassical Methods in Molecular Scattering
and Spectroscopy, edited by M. S. Child (D. Reidel, Dordrecht,
1980), Chap. 1, pp. 1-44.

M, G. Barwell, R, J. Le Roy, P. Pajunen, and M. S. Child,
J. Chem, Phys. 71, 2618 (1979).

12p, pajunen, Mol, Phys. 40, 605 (1980).

3p, Pajunen, J. Chem. Phys. 73, 6232 (1980),

4p, pajunen and J, Luppi, J. Chem., Phys. 78, 4110 (1982).

15(a) 8, M, Kirschner and R. J. Le Roy, J. Chem, Phys. 68,
3139 (1978); (b) 71, 3146(E) (1979); note too that the abscissa
scale of Fig. 3 of this paper should be labeled [(D —E)/€]l/3,

165, 1. Chan and D, Stelman, J, Chem, Phys. 39, 545 (1963).

U"H. Harrison and R. B. Bernstein, J, Chem, Phys, 38, 2135
(1963); 47, 1884 (1967).

18N, Fréman and P. O, Fréman, Nucl. Phys. A 147, 606 (1970),

9(a) J, A. Campbell, J. Comput. Phys. 10, 308 (1972); (b
J. Phys. A 12, 1149 (1979).

®(a) J, N, L. Connor, Mol. Phys, 15, 37 (1968); (b) 15, 621
{1968); (c) J. N. L. Connor and A, D, Smith, Mol. Phys. 43,
397 (1981},

AR, Paulsson, F. Karlsson, and R, J, Le Roy, UUITP Report
No, 39 (1982); also available as AIP document No, PAPS.
JCPSA-79-4346-15 for 15 pages of phase-integral eigenvalues
and three pages of text, Order by PAPS number and journal
reference from American Institute of Physics, Physics Auxi-

Paulsson, Karlsson, and Le Roy: High-order phase-integral eigenvalues

liary Publication Service, 335 East 45th Street, New York,
N. Y. 11017, The price is $1,50 for each microfiche, or $5
for a photocopy. Airmail addressed. Make checks payable
to the American Institute of Physics.

2(a) R. N. Kesarwani and Y. P. Varshni, Can, J. Phys, 56,
1488 (1978); (b) 58, 363 (1980),

BR. J. Le Roy and R. B. Bernstein, J. Chem. Phys. 52, 3869
(1970).

Y pxpressions for ', ®), and ¢, in a somewhat diiferent
notation, appeared in Ref.15,

Bgee, for example, M. Abramowitz and I. A. Stegun, Handbook
of Mathematical Functions (Natl, Bur, Stand. Appl. Math, Ser.
55 (U. S. GPO, Washington, D.C., 1964), Chap, 6.

% For the low orders 2V +1 =1 and 3, respectively, Eq, (18) is
equivalent to the criteria of Eqs. (25) and (28) of Ref, 15, Of
course, the accidental zeroes of & (v =3) and & (v =5) mean
that the analogous equation for cases in which these factors
would have appeared in the denominator of Eq. (18) is

D —E1>{1 2V + 1) /((av — )@@ -1 1/ 2/
B‘(6V)2/v}v/ (1=2) .

¥For all LJ(2v,v) model potentials C,=2.

BThese arguments do not apply to the very narrow interval
near dissociation where the high-order quantization conditions
break down,

29All:hough accurate quantal eigenvalues have not been reported
for the three weaker potentials considered in Refs. 22, for
present purposes the seventh order (four-term) eigenvalues
reported there may he taken to represent the exact level
energies,

30M, S. Cole and T. T. Tsong, Surf. Sci. 69, 325 (1977).

J. Chem. Phys., Vol. 79, No. 9, 1 November 1883

Downloaded 13 Mar 2004 to 129.97.80.195. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



