A two-isotope higher-order RKR-type inversion procedure
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The Rydberg-Klein—Rees (RKR) method is a valuable everyday tool for determining diatom
potential energy curves. However, the RKR method is based upon the first-order WKB
approximation, and while in most cases the potential curves it yields are adequate, there exist
situations in which their deficiencies are unacceptable. This work addresses the above problem by
presenting and testing a new higher-order, RKR-like inversion procedure which is exact within
the third-order WKB approximation. The new method relies upon the existence of data for two
isotopes. The turning point expressions obtained in the new method have exactly the same
structure as the ordinary RKR expressions, and the procedure requires no iteration. Tests for two
well-defined model problems show that the present method can yield potentials which are more
accurate than those obtained from first-order RKR calculations, independent of whether or not

the latter includes the widely used Kaiser correction.

I. INTRODUCTION

The Rydberg-Klein-Ress' or RKR inversion proce-
dure of diatomic molecule spectroscopy is probably the most
generally successful method for determining potential ener-
gy curves in all of molecular physics. However, the very suc-
cess of this procedure has tended to cause its users to forget
that it is not exact, in that it is based on the approximate first-
order semiclassical (or Bohr-Sommerfeld) quantization con-
dition. The potential energy curves it yields are sufficiently
accurate for most practical purposes. However, there are
situations in which their deficiencies are unacceptable. The
present paper addresses this problem by presenting and test-
ing a new higher-order RKR-type inversion procedure
which is exact within the third-order phase-integral or WKB
approximation.

In recent years, a number of other methods for generat-
ing “better-than-first-order-RKR” potentials have been
proposed.*~” However, they have not been widely adopted,
probably because of their relative complexity. Among other
things, all of those methods are iterative, in that successive
improvements to some zeroth-order potential must be calcu-
lated until a desired degree of convergence is achieved. The
method proposed here is different, both in that it involves no
iterations, and in that the expressions derived have exactly
the same structure and are just as easy to use as those appear-
ing in the ordinary first-order RKR procedure.

ii. METHOD
A. Review of the first-order RKR method

The starting point for the ordinary first-order RKR
procedure is the simple one-term WKB or Bohr—-Sommer-
feld quantization condition for a particle of mass « bound by
an effective one-dimensional potential U (r):

v+5=(l/1r/3)frzdr (E— U@, (1)

where 82 = (#2/2u), and r,(v) and r,(v) are the inner and outer
classical turning points at the energy E, defined by the re-
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quirement that U(r,)=E (v} = U(r,). According to this
expression, the allowed eigenvalues of the system are the
energies £ for which the right-hand side of Eq. (1) is exactly
equal to a half-integer (1/2, 3/2, 5/2, .-, etc.).

If v is treated as a continuous function of energy, then
Eq. (1} may be differentiated with respect to £ to obtain

dv/dE = (1/208 )Jrzdr/[E — UM 2

This expression is proportional to that for the period of a
classical oscillator moving subject to the potential U (r) and
following the usual manipulation of classical physics® it is
readily inverted to yield the following expression for the
width of the potential well at energy E = E (v):

E
ri(v) — ro{v) = 28 L dE'(dv/dE")/|E — E']"?

Y f ' /EW) — EWNVA o)

where v, is the value of the vibrational quantum number at
the potential minimum where E (v,) = 0.

For a rotating system, the effective potential contains a
centrifugal term

Ur)=Us(r)=Uglr) +JV + 118%/7, (4)

where J is the rotational quantum number, and the level
energy depends on bothvandJ, E = E (v,J ). Differentiating
Eq. (1) with respect to [J{J + 1)] yields

B %= _8/2m) f "dr/PLE — UMV, (5)
dE ;
where B (v) = 8E (v,J)/3[J(J -+ 1)1, _o is the usual inertial

rotational constant. Applying to Eq. (5) the same inversion
procedure used on Eq. (2) then yields

1/r{v) — 1/rfv) = (2/8 )jvdu'B(v’)/[E ) —E@)]"% (6)

Equations (3) and (6) are the usual (first-order) RKR equa-
tions for determining the classical turning points 7, and 7, as

© 1984 American Institute of Physics

Downloaded 13 Mar 2004 to 129.97.80.195. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



C. Schwartz and R. J. Le Roy: Higher-order RKR inversion procedure 3007

functions of the vibrational quantum number (or vibrational
energy).

B. Derivation of the present third-order inversion
procedure

The starting point for the present derivation is the
third-order version of the semiclassical quantization condi-

tion Eq. (1)
o+ 4= 1/8) [ drlE— U+ 6 196m

" 39 dr U(W/IE - UM, (7)
r

where primes denote differentiation with respect to 7 and the
contour of integration I” encloses the portion of the real line
for which E > U (r).° It is then assumed that there exist data

for two isotopic species with effective masses u, and p,, re-
spectively, and that the potential is exactly the same for both
species. Writing out Eq. (7) for each isotope at exactly the
same energy E and performing simple algebraic manipula-
tions to cancel out the term involving the third-order phase-
integral (the last term) then yields

[0+ §) = 303 4+ 9] B2 s — o)
- f " E— U] (8)

The right-hand side of Eq. (8) has exactly the same
structure as the ordinary one-term quantization condition of
Eq. (1), while the left-hand side is just a simple linear combi-
nation of the quantum numbers for the two isotopes at the
given absolute energy £. Applying the same manipulations
used in obtaining Eqs. (3) and (6) then yields the desired high-
er-order semiclassical turning point expressions:

J
172 _ o 172 12 dv; 2
[2V2%/(p, —p)l | dE'{p1? — — 13 Ty [E—E’]
0 dE

dv;
ry—r, =
2 1 £
28, le(E)dv, 1172 28, ) Jx11/2
= /[EW) —E - — avy/[E{v,) — E (v 9
(1 — po/py) Jub i/[Ev) (v1)] Wis— 1) 3/ [E () (v3)] 9)
and

d ’

E
Ur,— Ury = [8//fie, — )] f dE'{;»%’ZBi(v: ) —u
0

d
2 vy (E)

B Bi(1 — pa/py) I

where B, (v,) is the rotational constant for isotope i of mass
#4;. Note that in the second line of each of Egs. (9) and (10),
the values of the vibrational quantum numbers v,(E) and
v,(E ) which comprise the upper bounds on the integrals for
the two isotopes must correspond to exactly the same abso-
lute energy (relative to the potential minimumj; i.e.,
E\[v,(E)] = E,[v,(E)]. Similarly, v) and v correspond to the
common energy of the potential minimum.

Equations (9) and (10) are our primary theoretical re-
sults. While these expressions are exact within the third-or-
der phase-integral or WKB approximation, the integrals ap-
pearing there have the same simple structure as the integrals
appearing in the ordinary first-order RKR method [see Eqgs.
(3) and (6)]; the integrands consist of the same singular term
[E (v) — E (v')] ~ ? multiplied by a well-behaved function of
the experimental energies and B (v) values. Thus, use of these
expressions only involves use of the same simple numerical
methods now widely used for Eqs. (3) and (6).

C. Definition and determination of the integration limits

In practice, it is usually most convenient to use the sec-
ond versions of Eqs. (9) and (10) in which the integration
variables are the vibrational quantum numbers for the two
isotopes. The range of integration in each case runs from the
potential minimum, where the vibrational quantum
numbers equal v}, and v3, to upper limits corresponding to

dv} By(v{)/[E (v)) — E(})]"* —

av;,
3y “Byv3) -ﬂ;—} / (E—E'}*

2 v(E )

VYT ; ! _ 1\1/2
Bilpi/uy — 1) Ji dv; By{3)/ [Ev;) — E(v3)]™,

(10)

tqe same absolute energy E. Defining these upper limits sim-
ply requires one to determine the value of the second vibra-
tional quantum number v,(E ) associated with an absolute
energy specified by a particular value of the first vibrational
quantum number v,. For virtually any representations of the
experimental energies, this inversion of the relationship
E = E (v) will be quite straightforward. The only subtlety
which enters the calculation is therefore the determination
of vh(i = 1,2).

Within the first-order phase-integral approximation,
the fact that the integral on the right-hand side of Eq. (1)
vanishes at the potential minimum means that v = — 1/2
for all isotopes. However, the last term on the right-hand
side of Eq. (7) is in general nonzero at the potential mini-
mum, so the values of v} arising in the third-order approxi-
mation generally differ from — 1/2. The way in which v}
can be determined for a particular case depends on the na-
ture of the available experimental data. However, an essen-
tial constraint which must always be satisfied is that the val-
ues of v, for any two isotopes (assuming they have exactly the
same potential) must satisfy the relationship

(vo + /(05 + §) = (/1) > (11)

This expression arises simply from the observation that at
the potential minimum, the first integral on the right-hand
side of Eq. (7) vanishes, while the value of the second integral
is independent of the isotope mass.
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1. When both vibrational and rotational data are available

If data exist for both the rotational constants B (v) and
the energy levels E (v), the v} values may be determined in a
straightforward fashion using the tools provided by Dun-
ham.'®'! As was pointed out by Kaiser,'> the Dunham
expression for Yo, =[E(v = — §) — E (v =v,)] in terms of
the other vibration-rotation constants may be combined
with the value of w, = dE (v)/dv|,_ _,,, to yield

Vo= —1— Yy/w,. (12)
Equation (12) may be used to determine a value of v, for each
isotope separately. However, the stability of the present pro-
cedure requires that the values thus obtained be exactly con-
sistent with one another in the manner specified by Eq. (11).
In order to remove the effects of noise in experimental vibra-
tion-rotation constants and assure that Eq. (11) is satisfied,
the desired values of 7, should be defined in terms of the
appropriate mass-weighted geometric mean of the individ-
ual directly determined values of 7, [see Eq. (11)]:

(0 +4) = [lua)"205 + DO + 1/pe 172 (13)

2. When only vibrational data are available

If vibrational energies are known but rotational con-
stants are not, Eq. (10) [or Eq. (6)] cannot be used, so it is
impossible to determine a full potential using either the ordi-
nary first-order RKR method or present procedure. On the
other hand, data permitting, Eq. (9) [or Eq. (3)] may still be
used to determine the width of the potential as a function of
its depth. If some reasonable estimate can be made for the
relatively steep inner wall of the potential, a realistic esti-
mate of the overall potential energy function may thus still
be obtained. The following discussion considers the question
of the determination of v}, for such a case. However, a cau-
tionary comment regarding the choice of such an inner wall
function is presented in Sec. III C.

The absence of rotational constants also means that the
Dunham constant Y, and hence the corresponding v}, val-
ues, cannot be determined in the straightforward manner
described above. In this case, the consistency requirement of
Eq. (11) is the only condition which can readily be used for
determining third-order values of vj,. Moreover, this is only
possible if the level energies for the two isotopes are accura-
tely known relative to one another. If this is so, recalling that
the vibrational quantum numbers are in general functions of
energy [see Eq. (7)], the desired v}, values may be determined
by using the (numerically inverted) energy level expressions
for the two isotopes to find the absolute energy E satisfying
the equation

WiE) + A/ AE ) + 1 = (o/py)' % (14)
Within the third-order phase integral approximation, the en-
ergy thus obtained corresponds to the potential minimum,
while the associated v;(E ) values are the desired integration
limits v5.

This situation can arise in two contexts: The first is sim-
ply the case of a diatomic molecule for which the experimen-
tal data are not sufficiently extensive or well resolved to yield
reliable B(v) values. In this case, the experimental observa-
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bles are the relative positions of the vibrational levels for the
two isotopes considered separately. The only way these two
vibrational ladders may be positioned correctly relative to
one another is if a reliable extrapolation can be made from
each data set to determine the distance to their common
dissociation limit. If this can be done, Eq. (14) may be used to
determine the desired integration limits and Eq. (9) used to
calculate the third-order well width function implied by the
given vibrational data. However, for this approach to give
reliable results, the uncertainties in the extrapolations to dis-
sociation must be much less than the associated Yy, values.
In practice, this will very rarely be the case. For a diatomic
molecule, therefore, the absence of reliable rotational con-
stants usually precludes the application of the present third-
order inversion procedure.

A second type of situation in which rotational constants
are not available arises when the vibrational levels in ques-
tion are the one-dimensional bound states observed in the
scattering of atoms from surfaces. ' In this case, the observa-
bleis the level binding energy itself, i.e., the distance to disso-
ciation. The positions of the levels for the two isotopes rela-
tive to one another are therefore known, so Eq. (14) may be
combined with the known level energy expressions to obtain
the desired values of v}, which may in turn be used in Eq. (9).
An example of this type of situation is described in Sec. III C
below.

llIl. TESTS OF THE METHOD
A. Definition of the model problems

In order to illustrate its utility, the present procedure
has been applied to two model problems consisting of syn-
thetic data generated from a known potential energy curve.
In both cases, the potential used was a Lennard-Jones (12,6)
function:

Vir) = ellr./r® — 1T (15)

The first model problem was defined by a well-capacity pa-
rameter'* of B, = 2uer? / # = 1000 for the light isotope
and an isotopic mass ratio of exactly 2. This correspondstoa
potential with (say) a well depth of € = 1000 cm ™", an equi-
librium distance of r, =4.0 A, and isotopic masses of
4, = 1.053 601 875 and y, = 2.107 203 750 amu. For both
isotopes, the Schrodinger equation was solved numerically
to determine quantum mechanical level energies and rota-
tional constants B(v); the results obtained are listed in Table
1. Although the calculations were significantly more accu-
rate than this, the values used as synthetic data in the analy-
sis described below were rounded off at the number of signif-
icant digits shown in this table.

Smooth “experimental” E{v) and B(v) functions were
then determined by fitting the results in Table I to either the
familiar Dunham'® polynomials in (v + 1), or to “near-disso-
ciation expansion (NDE)” functions.'>!$ For fits of similar
overall quality, the results obtained were not particularly
sensitive to the form of the expansion function, as long as Eq.
{13) was used to assure that Eq. {11) was satisfied. The results
described below were generated using a rational fraction
NDE representation’® of the B (v) values.

The second model problem again used the LJ{12,6) po-
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TABLE L. Calculated vibrational level energies E, (relative to the dissocia-
tion limit} and rotational constants B, of the first Lennard-Jones (12,6}
model problem (mass ratio = 1:2) used for testing the present method.

p, = 1.053 601 875 amu 2, =2.107 202 75 amu

v E, (em™) B, {cm™) E, (em™") B, (em™)
0 — 820.637 0.951 343 — 871.041 0.482 928
1 — 527.510 0.848 666 — 646.584 0.447 484
2 — 311.696 0.737 103 —462.888 0.409 955
3 — 163.037 0.615 362 — 316.552 0.370 126
4 -~ 703721 0.482 110 — 203.946 0.327 765
5 -~ 214331 0.336.140 —121.192 0.282 638
6 — 2799550 0.176 434 — 64.1392 0.234 520

— 283535 0.183 216

— 9.10893 0.128 596

— 140275  0.070 548

tential form of Eq. (15) withe = 1000cm~'and r, =4.0 &,
but the reduced masses of the two isotopes were chosen to be
10 and 11 amu, respectively. The vibrational level energies
calculated for these species are listed in Table I1. The smooth
E (v) functions required by the RKR procedure were again
obtained by fitting these energies to rational fraction NDE
functions.'®

B. Model problem I: An application using both
vibrational and rotational data

For the first of the model problems described above (,/
M, = 2), we used the techniques outlined in Sec. IIC 1 to
determine v}, and then used in turn Egs. (9) and (10), and
Egs. (3) and {6) to calculate the well width and inverse turn-
ing point difference as functions of energy. This has been
done at three levels of sophistication: (i) simple first order,

TABLEII Calculated vibrational energy levels E, (relative to the dissocia-
tion limit of the second LJ(12-6) model problem, u,/x, = 10/11 for testing
the present method.

fy = 10 amu [, =11amu

v E,/ecm™! E,/em™!

0 —939.5149303 - 942.281034 1
1 — 825.772 886 2 — 833.4203897
2 —721.172 3670 — 732.889 507 6
3 — 625.405 876 4 — 640.422 5502
4 - 538.157 1323 — 555.746 456 9
5 — 459,100 638 2 — 478.580 604 7
6 — 387.901 2409 — 408.636 4870
7 — 3242136765 — 345617308 1
8 --267.682 1114 —289.217672 5
9 —217.939 6840 —239.123 198 1
10 — 174.608 058 1 —195.010 164 5
11 ~137.296 9990 — 156.545170 3
12 — 105.603 987 6 —123.384 8124
13 — 79.1138927 — 95.1754028
14 — 57.398 7253 — 71.5527349
15 — 40.0175021 — 52.1419206
16 — 26.5162555 — 36.5573191
17 — 16.428 2275 — 244025841
18 — 92742946 — 15.270858 9
19 —~ 45636717 — 87451525
20 — 17949494 — 43989338
21 — 04575135 — 17969805
22 — 00334101 — 04965191
23 —  0.048 698 5

using Eqgs. (3) and (6) with v = — §; (ii) Kaiser-corrected
first order,’? in which the v, values used in Egs. (3) and (6)
were obtained using Eq. (12); and (iii) the present procedure
based on Egs. (12), (13), (9), and (10). Note that the first two of
these approaches yield independent results for each isotope.

For each of these cases, the results obtained were com-
pared to the well widths and inverse turning point differ-
ences of the actual model potential described above. The
resulting absolute errors in the calculated quantities are
shown in Figs. 1 and 2. They dramatically illustrate the im-
proved accuracy of the present procedure relative to both the
simple first-order and first-order Kaiser methods. The use of
Dunham or alternate NDE functional representations of the
experimental data has little effect on the behavior seen in
these figures.

The error in the simple first-order method is due to its
complete neglect of the second integral in the quantization
condition of Eq. (7). The Kaiser approach’? takes account of
this integral, but fixes its value at that corresponding to the
potential minimum. While it fares somewhat better than
simple first order as far as the well width is concerned (see
Fig. 1), the Kaiser approximation yields worse results for the
inverse turning point difference. Thus, contrary to popular
belief, use of the “Kaiser correction” does not always yield
improvements on a simple first-order potential.

C. Application to vibrational data alone

If data exist for the energy levels but not for the rota-
tional constants, it is still possible to determine v, from the
consistency requirement of Eq. (14) and then to calculate the
well width function from Eq. (9). For our first model prob-
lem (u,/p, = 2.0), comparing the errors in the results ob-
tained in this way with those obtained using the methods

T T T ]l f
/ !
0.2+ / /
/ //
W)y
/ /
/
e T T
= eIl 3" order
<00 FREETT——
< Tl »Klug)
bt = A ~
; N . N
-0} K~ 1
_02 - ‘; -
0.0 0.2 0.4 0.6 0.8 1.0
Ele

FIG. 1. For model problem I (i,/u, = 1/2), absolute errors in calculated
values of the potential width [r, — »,] as a function of energy £ {scaled by the
well depth ¢€). The solid curve represents results obtained by the present
third-order method, the long-dash curves 1(u,) and 1(u,) the usual first-
order RKR results for masses 1 and 2, respectively, and the short-dash
curves K (i) and X (1,) the corresponding Kaiser-corrected first-order re-
sults.
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FIG. 2. For model problem I (2,/p, = 1/2), absolute errors in the determin-
ation of [1/7, — 1/r,) as a function of the energy (scaled by the well depth €);
curves labeled the same as in Fig. 1.

discussed in Sec. II B yields results essentially identical to
those shown in Fig. 1.

Another example of this type is provided by the second
model problem, the one for which {(¢,/u, = 10/11). Follow-
ing the procedure outlined in Sec. II C 2 the energy levels
were treated as if the common dissociation limit was known.
Combining the resulting smooth E (v} expressions with Eq.
(14) yielded v, values for the two isotopes of — 0.500 767 1
for mass 10 and — 0.500 731 32 for mass 11. We note in
passing that the fits imply for masses 10 and 11 a common
well depth of 1000.0022 cm™; this value differs from the
true value of exactly 1000.00 cm ~' by much less than the Y,
values of 0.0945 and 0.0859 cm ! for isotopes of mass 10 and
11 implied by the above v, values. The latter values are also
in good agreement with the exact value of ¥, = (7/8)(¢/B,)
for these LJ(12,6) potentials (0.0922 and 0.0838 cm ™", re-
spectively).

It has long been known that when rotational data are
not available, combining a realistic extrapolation for the in-
ner potential wall with the well width function calculated
from the vibrational energies alone can give a realistic over-
all potential.’’~!° This is feasible because, except right near
its minimum where the harmonic constant defined by the
vibrational energy derivative determines its shape, the inner
wall of the potential is usually sufficiently steep that virtually
any plausible extrapolation will introduce little error.

Tellinghuisen and Henderson'® recently proposed that
in cases like this the inner wall of the potential be modeled by
a Morse potential whose energy and shape parameters are
chosen to match the first two derivatives of the vibrational
energy o, and w,x,. While this is undoubtedly a good ap-
proach, it would be inappropriate to use this particular func-
tional extrapolation in combination with a third-order well
width function obtained by the present method. The reason
for this is simply that for a Morse potential Yy, is always
identically zero (i.e., vy = — 1/2), which is usually inconsis-
tent with the value of Y, associated with the third order well

width function. For this reason, we would recommend that
the function used to represent the inner branch of the poten-
tial have derivatives at its minimum which are consistent
with the derived value of Y, as well as with the experimen-
tally obtained w, and w,x, coeflicients. The simplest way to
satisfy this condition would be to use the Dunham?® or Si-
mons et al.?® polynomial expressions for the potential, with
the three leading coefficients defined by the external values
of the Dunham'® parameters Y,,, Y,,, and Y,,. However,
any other potential form whose derivatives at the minimum
satisfied this condition would be equally appropriate.

D. Numerical stabllity of the present procedure

The present method depends upon the existence of sys-
tematic differences between the mass-scaled properties of
the two isotopes; in terms of the language introduced by
Stwalley,?! it depends on an accurate quantitative knowl-
edge of the breakdown of the concept of mass-reduced quan-
tum numbers. As a result, it is to be expected that it should
only be used if the data in question are of fairly high quality.
This question has been examined by repeating the calcula-
tions for the second model problem (,/u, = 10/11) using
increasingly less precise input data.

In order to mimic the growth of experimental uncer-
tainty, the number of decimal places retained in the input
energy levels Table II was systematically decreased in turn
from 8 to 6 to 4 to 2. In each case fits to obtain new E (v)
functions were performed and the resulting functions used in
Egs. (3) and (9). In these calculations, the same functional
form for E (v) was used for each case. For cases in which four
or more decimal places were retained in the energy levels, the
absolute errors in the width are virtually undistinguishable
and correspond to the solid curve in Fig. 3. However, when

T T T T /; ﬁ
i
0.4 F // B
’
1(1-‘»)\'-//
/
/
/
,:<t 02+ ///A\] (/“'2) 4
1) . /4
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T 00 fem====""
N
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b \ e N
—_ = Ve M -
0.2 \ r \
s \
\ o’ :‘5”j order :
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-0.4 |
L i L \\ 1
0.0 0.2 0.4 0.6 0.8 1.0
E/e

FIG. 3. For model problem II (12, /i, = 10/11), absolute errors in the calcu-
lated values of the potential width [7, — r,] as a function of energy E (scaled
by the well depth ¢). The solid curve represents results obtained by the pres-
ent third-order method, the long-dash curves 1(z,) and 1{u,) first-order
RKR results for masses 10 and 11, respectively, and the long/short-dash
“third-order {rounded)” curve results obtained from the present method us-
ing energies rounded off to two decimal places.
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the energies are rounded off to two decimal places, the abso-
lute errors in the width, the broken line of Fig. 3, is large. As
can be seen from Fig. 3 the accuracy which can be obtained
using the present method is, as expected, dependent upon the
accuracy of the input energy levels. As a quantative test of
the applicability of the new method we suggest the following
procedure: if the standard error associated with fitting the
input energy levels using mass reduced quantum numbers is
larger than the standard errors associated with the fits of
either isotope alone, then the present method is applicable.

1V. DISCUSSION AND CONCLUSIONS

This paper has derived and tested a method by which
RKR-like turning points correct to third order may be ex-
tracted from data for two isotopes of single species. As can be
seen from Figs. 1, 2, and 3, the new method yields signifi-
cantly better results than either the simple first-order or Kai-
ser-corrected first-order RKR procedures. Moreover, the
derived equations have the same simple structure as those
associated with the usual first-order method and their use
requires essentially the same amount of numerical effort. It
was also found that use of the “Kaiser approximation” does
not always yield a better overall potential than a simple first-
order treatment.

For a useful application of this procedure to a real sy-
tem, both the experimental data and its analytic representa-
tions must be of high quality and internally consistent for the
two isotopes. Moreover, as the present method assumes that
the two isotopes have exactly the same potential, it should
not be applied unless Born—-Oppenheimer breakdown effects
are smaller than errors associated with use of the first-order
WKB approximation.
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