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In a crossed molecular beam experiment, time-of-flight distributions of oD, molecules scattered
from Ar have been measured in a center-of-mass angular range from 50° to 100° at a collision
energy of E = 85 meV. The data show clearly resolved 0—2 rotational transitions of D, in the
backward direction. From a combined analysis of these inelastic cross sections and the measured

total differential cross sections for D, 4+ Ar at E = 83 meV, the complete repulsive potential
surface is derived. Comparison with the potential which LeRoy and Carley determined from
spectroscopy shows that the repulsive part of its anisotropic V¥, term is steeper, whereas the
isotropic parts V, agree within the experimental error. A combined analysis of the present
inelastic scattering data and the original spectroscopic data yields an improved version of the
three-dimensional stretching-dependent potential surface of LeRoy and Carley. Cross sections
calculated from the semiempirical “HFD” potentials reported by Tang and Toennies and by
Rodwell and Scoles are also fairly close to experiment, with the latter potential performing
somewhat better than the former. The comparison with other hydrogen molecule-rare gas
interactions reveals a maximum in the effective strength of the repulsive anisotropy for Ne-H,
and a nearly complete conformality of the reduced ¥, and ¥, terms to each other for He, Ne, and

Ar-H,.

1. INTRODUCTION

The hydrogen molecule-rare gas systems have been ex-
tensively investigated during the past ten years as prototypes
of systems with weakly anisotropic potential energy sur-
faces. Some of them are simple enough to be accurately de-
scribed by ab initio electronic structure calculations with full
configuration interaction,! and all may be realistically ap-
proximated by ‘“Hartree-Fock dispersion” (HFD) model
potentials®® in which SCF calculations for the short range
repulsion are combined with suitably damped dispersion co-
efficients which give rise to the potential well. At the same
time, many types of experimental data are available and have
been analyzed in terms of potential functions. In particular,
molecular beam measurements of the velocity dependence of
integral cross sections*” and of total differential cross sec-
tion,® virial coefficients,” and high precision diffusion
data'®'! have been used in this way. However, most of these
data are only sensitive to the effective spherical part of the
potential. Information on the potential anisotropy, has been
obtained from nuclear magnetic resonance relaxation
times,'? integral cross sections of oriented molecues,'? in-
frared absorption spectroscopy'*'® and molecular beam
magnetic resonance spectroscopy’’ of van der Waals mole-
cules.

Most of the data mentioned above are sensitive mainly
to the attractive part of the potential. However, state selec-
tive elastic and rotationally inelastic large angle differential
scattering cross sections are a particularly direct tool for
probing the repulsive part of both the isotropic and the an-
isotropic part of the potential surface. Moreover, a complete
two-dimensional potential surface of Ne + D, derived main-
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ly from the differential cross sections of 0—0 and 0—2 rota-
tional transitions'® is also able to predict correctly the differ-
ential cross sections of 0—1 transitions of HD,'? the velocity
dependence of the integral cross sections of oriented mole-
cules'? and the diffusion coefficient.'®!! The present contri-
bution reports similar results for Ar + D,. Total differential
cross sections were obtained at a collision energy E = 83.0
meV in the center-of-mass (c.m.) angular range from 3° to
100°. For three selected angles in the backward direction we
also measured the 0—2 rotational transitions at a slightly
different energy E = 85 meV (Sec. I1).2° A preliminary eva-
luation of these data has appeared elsewhere.?!

In the present work these data have been used, together
with some theoretical constraints on the attractive part of
the potential and results from spectroscopy,'® to devise a
complete two-dimensional potential surface. This yields the
first reliable potential for the repulsion anisotropy of this
system based on experimental data (Sec. III). These results
are compared with predictions of two of the HFD type mod-
el potentials which have been proposed for this system (Sec.
V).

Another comparison is made with the most reliable po-
tential previously reported for this system, the “BC, func-
tion” of LeRoy and Carley.'® This surface is unique in that it
is three dimensional, incorporating a dependence on the hy-
drogen bond length as well as on the other two degrees of
freedom. It was derived from a careful analysis of the dis-
crete infrared van der Waals molecule spectra of McKellar
and Welsh?? with a collapsed diatom limit constraint im-
posed on the potential. This surface is in close agreement
with results derived from total differential cross sections,®
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low energy integral cross sections with orbiting resonances,®
and integral cross sections for oriented molecules'® (Sec. V).
Its isotropic part is also fairly consistent with our data, but
the anisotropy strength function is found to be too steep in
the repulsive region. A combined analysis of the present in-
elastic scattering data and the original spectroscopic data is
therefore used here to yield an improved version of the BC,
three-dimensional surface.

Finally, we compare the results of the present work
with the anisotropic potential surfaces for hydrogen mole-
cules interacting with other rare gases, and in particular with
the accurately known potentials for He 4 H, (Ref. 1) and
Ne + H, (Ref. 18), as well as with the earlier spectroscopic
potentials obtained'* for Kr + H, and Xe + H, (see Sec. VI).
Regularities and general trends for the anisotropies and the
reduced potentials forms are discussed for these systems.

{l. EXPERIMENTAL RESULTS

A. Apparatus

The details of the molecular beam machine are dis-
cussed elsewhere.'®?* Briefly, the D, and Ar beams are pro-
duced as nozzle beams in two differentially pumped source
chambers. They are introduced into the scattering chamber
through skimmers which define beams with small angular
divergence. At the scattering center the two beams cross at
an angle of 90°. The angular dependence of the cross section
is measured by rotating the source assembly relative to the
scattering center. Scattered particles are detected by a uni-
versal detector containing an ionizing source, a quadrupole
mass filter and secondary electron multiplier. Single inelas-
tic transition probabilities are determined by measuring the
flight time of the scattered particies by means of the pseud-
orandom chopping technique.

The argon is expanded at low pressure through a large
nozzle to avoid condensation and to obtain a reasonable in-
tensity. For the D, gas, condensation effects do not need to
be considered. The D, gas is fed through a converter which
produces ortho D, (oD,) in which only states with even rota-
tional quantum numbers are populated. On expanding the
oD, gas at high pressure, nearly all D, particles are found in
the ground rotational statej = 0.

Thus, the time-of-flight (TOF) spectra are measured
with oD, while the total differential cross sections are mea-

TABLE 1. Beam parameters.
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FIG. 1. Measured total differential cross sections in the laboratory system.
The solid line is calculated from the present best-fit potential of Table III.

sured with normal D, (nD,), which is only 67% ortho. The
beam parameters are listed in Table I. The degree of rota-
tional excitation of the initial D, beam is estimated by extra-
polation from Raman studies of nozzle beams at lower stag-
nation pressures.”*

B. Experimental results

The total differential cross sections measured at a rela-
tive kinetic energy of 83.2 meV are shown in Fig. 1. Since the
potential well depth of this system is small compared to the
collision energy, only well resolved diffraction oscillations
are observable. The angular positions of these oscillations,
which are a direct measure of the position of the repulsive
wall of the interaction potential, have experimental uncer-
tainties of only 0.2%, whereas the large angle nonoscillatory
cross section is known only to about 10%.

nD, Total Ar oD, TOF Ar
Energy (meV) 83.0 85.0
Velocity (m/s) 2017 565 2042 560
Nozzle diameter ( 4) 20 100 10 50
Source pressure (bar) 100 1.8 192 3
Source temperature (K) e ces 304 304
Speed ratio (S) 29.6 22 29 21
Beam divergence {deg) 1.6 ix L7 40
Rotational temperature (K) cee 70 .

0.89

Population inj =0
j=2
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FIG. 2. Measured time-of-flight distributions of oD, + Ar for different lab-
oratory scattering angles. The peaks correspond to the elastic (normalized
to 1) and the inelastic j = 0—2 rotational transitions.

Time-of-flight spectra have been measured at laborato-
ry (LAB) angles of 8 = 40°, 60°, 70°, and 80" for a collision
energy E = 85 meV. The results are shown in Fig. 2. These
spectra have been normalized relative to their maximum
peak intensity after subtracting out a large background con-
tribution. The large peak corresponds to elastic scattering
while the smaller second peak at an energy loss of E = 22.2
meV is due to the j = 0—2 rotational transition. The latter
peak appears only at the larger deflection angles and in-
creases in size with increasing angle. Because of background
problems, the precision with which the relative magnitude of
the inelastic peaks may be determined varies between 12%
and 20% (see Table II).

C. Data analysis

The conversion of the data from laboratory time-of-

flight measurements to center-of-mass differential cross sec-
tions follows closely the procedure described in detail in Ref.
18 and 25. First, the distribution functions of the final labo-
ratory velocity G, (v,) are calculated for all transitions
Jj = i—>fby a Monte Carlo procedure using as input data the
measured angular and velocity spreads of the two beams and
the transmission function of the time-of-flight analyzer. The
intensity of the TOF spectrum is given by

N, = ZK'UJ‘. ljthtf(vf)piaif(l—?’ 8). (1)
m

K is a constant which depends only on angular variables, p; is
the fractional initial state population, g, is the differential
cross section, and J, the Jacobian of the transformation
from the center of mass to the LAB system. The bars indicate
variables averaged over the small distribution functions. The
summation has to be carried out over all possible transitions,
included those which lead to the same energy loss.

In a second step the calculated distribution functions
are fitted to the measured spectra, the only adjustable pa-
rameter being the amplitude. With the known values for v,
and J; we get from the spectra the cross sections at the ener-
gy loss AE (in meV):

dAE = 0) = K (po0oo + P2022),

AAE = 22) = Kpoory,. @)
Using the values from Table I for p; and the identity
Ooo + Ogz = 035 + 05422 0,, We can easily derive the relative
cross sections K 0y, and K oy, To determine absolute val-
ues, the constant X has to be determined. This is done by
adjusting the total differential cross section (which contains
the same constant) to agree with a calculation based on a

reliable interaction potential. The values given in Table 1I
are based on the best-fit potential of this work (see Table III).

1ll. FITTING PROCEDURE AND POTENTIAL
DETERMINATION

The main objective of the present study is the determin-
ation of a reliable anisotropic potential from the rotationally
inelastic scattering data. The interaction potential is expand-
ed in terms of Legendre polynomials

V(R,7) = VolR) + V(R )Pycos ) + -, 3)

where R is the distance between the atom and the center of
mass of the molecule and ¥ is the angle between the molecu-
lar axis and R. For the energy and the transition under inves-
tigation, it is sufficient to truncate this series after the first
angle-dependent term. Ab initio calculations for hydrogen
molecule-rare gas systems show that the ¥, term is not larg-
er than 7% of the ¥, term.! If such a small ¥, term is includ-
ed in the calculation of the scattering cross sections, the 0—2
transition changes by less than 2% justifying the neglect of
this contribution.'® Similar conclusions have been obtained
from the analysis of infrared spectra.?®

Detailed model studies show that V,(R ) can be deter-
mined to a high accuracy from cross sections for the j = 0—2
transition only if the isotropic part V(R )is well known, since
this part determines the range of ¥,(R ) which is probed. %!
We therefore begin by obtaining a reliable effective spherical
part of the potential.

TABLE II. Measured differential cross sections for the rotational excitation of D, in D, + Ar collisions at £ = 83 meV. 1, are c.m. scattering angles for the
transition i—f. The absolute values are obtained by calibrating the elastic cross sections by calculation based on the best fit potential of this work.

8(LAB) Iy, o/ A% sr™! Foo Opo/A% 817!

g 7.2 0.136( 4- 0.027) .7 2.259( + 0.045)
70° 72.2° 0.174{ 4+ 0.019) 85.5° 1.935( + 0.039)
80 98.8° 0.181( 4 0.022) 98.3° 1.734( 4 0.035)
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TABLE III. Characteristic parameters of various potentials for Ar + D,.

Vo Va
Ref. €/meV R, /A Ry/A Vo(2.7)/meV e/meV R, /A R/A V,(2.7)/meV
Tang, Toennies 2 630 4.58 3.196 98.5 0.645 3.73 3.34 20.0
Rodwell, Scoles 3 645 3.57 3.164 69.5 0.751 372 3.32 16.3
LeRoy, Carley (k =0) 16  6.307 3.573 3.171 82.8 0.709 3.743 3.34 20.3
Vib.av. (J =0, v =0) 16  6.256 3.573 3172 82.3 0.698 3.744 3.35 20.1
This work (m = 3.022) 6.30 3.578 3.173 76.5 0.711 3.725 3.34 21.1

The potential model used is the generalized Buck-
ingham—Corner form introduced by LeRoy and Carley'®

VilR)=A;R ~™exp(—B;R)

—(CaaR 7°+ CyuR %) f(R), 4)
where
SR)=exp[ —4R,/R—17] for R<R,
=1 for R>R,;

There are six free parameters for each potential A = 0,2.
Two of them, usually 4, and Cg,;, can be replaced by the
characteristic minimum depth and position parameters €;
and R,,,; .»’ The parameters of the damping function R ;, are
set equal to the corresponding minimum distances R,,,, . The
remaining parameters are determined as follows.

The C,, arefixed at calculated values'®and€; andR,,;
are allowed to vary only within the error limits given by
LeRoy and Carley.'® Then we are left with two shape param-
eters for the repulsion 8, and m . For the isotropic part they
are determined from the positions of the diffraction oscilla-
tions of the total differential cross section, which are to a
high precision a measure of the distance at which the isotrop-
ic part equals zero, R, plus the large angle scattering which
determines the steepness of the potential. An attempt to use
the simpler m, = 0 version of this potential form failed,
since the best-fit potential-minimum parameters obtained
(when only differential cross sections were used as input in-
formation) were outside the error limits given by spectrosco-
py (see Ref. 21). The complete potential form of Eq. (4) was
therefore used. For V(R ) we use the m value obtained for the
isotropic potential and determine 3, from the inelastic cross
sections. The parameters resulting from a simultaneous best
fit to both types of cross sections, using the full potential
surface (see Ref. 18), are as follows:

Ay =1811.95 ¢V, A, =604.13 ¢V,

Ceo = 16.676 eV AS, Cs, = 1.6738 eV AS,

Coo = 128.51 eV A8, Cy, =27.77 €V A8,
Bo=4584 A1, B,=475A"", (5)

me=m,= — 3.022.

The characteristic strength and length parameters of
the best-fit potential described by Eqgs. (3)—(5) are summar-
ized in Table III, together with analogous constants for pre-
viously proposed potentials. Comparisons of calculations
based on this potential with the experimental results for the
diffraction oscillations and the large angle part of the total
differential cross section are shown in Figs. 1 and 3, respec-

tively. The corresponding state selected cross sections for
0—>0 and 0—2 transitions are displayed in Fig. 4; the present
best-fit-potential yields the solid curves. The agreement is, in
all cases, nearly perfect. The dimensionless standard devia-
tions (DSD, as defined in Ref. 16 or 18) associated with this
fit are given in Table I'V. In conclusion, the total differential
cross sections are only consistent with potentials having a
zero at Ry, = 3.175( 4 0.002) A and an isotropic potential
strength at R = 2.7 A of ¥,(2.7) = 77( + 10) meV.

As a further test of the reliability of this potential, we
have calculated the second virial coefficient and the diffu-
sion coefficient. The second virial coefficients for the interac-
tion of an atom and a diatom are given by (where 8= 1/
kT)ZS

B(T) = ﬂ'NLde d(cos )R *[1 —exp (—BV(R, 7). (5)

To include the anisotropy of the potential in a suitable form,
the Legendre expansion of Eq. (3) is used and the exponential
function is expanded in powers of 5, yielding

1

10 T T T T

3 D,-Ar |

Intensity / arb. units

10020 30 40 50 60
LAB angle / degree

FIG. 3. Comparison of measured large angle total differential cross sections
with calculations based on three different potential:—this work; ---Tang
and Toennies (Ref. 2);—Rodwell and Scoles (Ref. 3). The curves are arbi-
trarily shifted from each other.
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FIG. 4. Comparison of measured differential cross sections for 0—0 (upper
curves) and 0—2 (lower curves) rotational transitions of oD, + Ar with cal-
culations based on three potentials (see Fig. 6).

By(T) = 27N, [ [ar R>01 — expi — w4

~ S (=18

(6)
xde R 2 exp( — BV)[ V(R )1*{P,cos )" )]-

The brackets surrounding P,{cos ¥)" in the last term denote
the averaging over all orientation angles . The calculations
show that the largest contribution to B,,{T"), the first term in
Eq. (6), is caused by the isotropic part of the potential, while
the term depending on the anisotropy yields only small cor-
rections which decrease with 8”. The latter contributions
are also small compared to the first radial quantum correc-
tions, which has also been included in the calculation. The
B ,(T ) values calculated using the present potential are com-
pared with experimental results of Brewer?® and Schramm et
al® in Fig. 5. The calculated results are in excellent agree-
ment with the high temperature experiments,?® but they dis-
agree with some of the low temperature measurements® by
more the reported experimental uncertainty of 4+ 6 cm?/
mol.
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FIG. 5. Comparison of measured second virial coefficients (@ Ref. 9, ] Ref.
28) with calculations based on the three potentials of Fig. 6.

The binary diffusion coefficient was calculated using
the computer program of Pack (see Ref. 30). Although this
procedure only takes account of the isotropic part of the
potential, the validity of this approximation for this type of
system has been demonstrated by a direct comparison with a
full close coupling calculation for the case of H,~Ne.*! The
calculation based on the best fit potential of this work gives
D ,(H, + Ar) = 0.816 cm?/s at T = 300 K, a result in rea-
sonable agreement with the experimental value of 0.824
c1,1.12 /S. 10,11

IV. COMPARISONS WITH HFD MODEL POTENTIALS

The present section examines the two Hartree-Fock
dispersion model potentials which have been proposed for
this system by Tang and Toennies (TT)* and Rodwell and
Scoles (RS),” and compares calculations based on them both
with experiment and with calculations associated with the
best-fit potential described above. These three potentials are
shown in Fig. 6 and some characteristic parameters are given
in Table III. Although the general behavior of the two HFD
potentials is quite similar, they differ in a number of details.

For the four main types of quantities considered hither-
to the root mean square deviations associated with the pre-

TABLE IV. Dimensionless standard deviations for predictions of various H,/D, + Ar potentials.

. Potential of:

Ref. 2 Ref. 3 Ref. 16 This work
Propert; — _ Ref. 21 —_——
perty T RS vibav. € Sec. I
Total diff., oscillations (this work) 0.88 1.66 1.16 0.60 0.98

Total diff., large angles (this work) 0.53 0.22 0.35 0.19 0.19

Diff. 0—2 (this work) 3.92 1.65 0.51 0.57 0.45

Virial coefficient (Refs. 9, and 29) 119 0.87 0.76 1.23 0.77
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FIG. 6. Isotropic { V) and anisotropic (V) interaction potentials for D,(H,)}—-

Ar:—this work; ---Tang and Toennies (Ref. 2);—Rodwell and Scoles (Ref.
3).

dictions of the various potentials are listed in Table IV, De-
tailed comparison of their ability to reproduce the
experimental data are provided by Fig. 3 for the large angle
total differential cross sections, and by Fig. 5 for the second
virial coefficients. The most discriminating experimental
quantity appears to be the rotationally inelastic j = 0—2
cross section, with regard to which the predictions of both
models are too small, with those for the TT model lying far
outside the stated error bounds.

A comparison of the isotropic and anisotropic parts of
the TT potential with those of our best fit potential clearly
implies that the errors in the inelastic cross sections associat-
ed with the former occur because the repulsive part of V(R )
is too strong. This conclusion is also consistent with the defi-
ciencies of the large angle elastic differential cross sections
implied by the TT function (see Fig. 3). Conversely, for the
RS model the anisotropy strength function V,(R ) appears to
be too weak; this leads to less dramatic discrepancies in the
calculated inelastic cross sections since V,(R) grows at a
slower rate than does V(R ) as R decreases. For the virial
coefficients (see Fig. 5) the RS model again gives better re-
sults than does the TT model. In general, the predictive char-
acter of the two models is satisfactory if only moderate accu-
racy is required or if the measured quantities are not too
sensitive to the potential. This qualitative agreement,
achieved with no adjustable parameters, attests to the utility
of the HFD-type procedure for estimating potential energy
surfaces in the absence of other information. However, for
special quantities like the j = 0—2 excitation cross sections,
their prediction can deviate appreciably, as is seen here for
the TT model.

V.COMPARISONS WITH SPECTROSCOPIC POTENTIAL
ENERGY SURFACE

The BC,(6, 8) function of LeRoy and Carley'® is the
most sophisticated and reliable potential energy surface pre-

viously derived for the Ar-H, system. It was obtained from
an analysis of the discrete infrared spectra of the van der
Waals molecules H,~Ar and D,~Ar,?? subject to the con-
straints that it have the correct theoretical Cg coefficients
and the correct behavior in the “collapsed diatom limit”
when H,~Ar becomes He-Ar. This analysis determined not
only the effective spherical and anisotropic radial strength
functions V(R ) and V,(R ), but also their dependence upon
the diatom bond length. The radial potential strength func-
tion used had the form of Eq. (4) with m; =0 and
R, =R,, =R, =3.5727 A used to define the onset of
change in the damping function f(R ).

In addition to reproducing the spectroscopic data from
which it was determined,?? this potential surface is also able
to predict correctly the low energy integral cross sections,®
total differential cross sections,® and the integral cross sec-
tions of oriented molecules.'® However, all of these phenom-
ena are mainly sensitive to the attractive or near repulsive
part of the potential outside its zero point. It is therefore very
interesting to examine its ability to reproduce the present
measurements, which are relatively more sensitive to the re-
pulsive short-range part of the interaction.

A preliminary test?! of the rigid diatom version of the
isotropic part of this potential (denoted £ = O in the nomen-
clature of Ref. 16} suggested that its zero point was slightly
too small, since it could not fully account for the diffraction
oscillations, and that its repulsive part was too steep, since it
did not properly describe the diffusion coefficients!®'! and
large angle total differential cross sections. An attempt to
take these effects into account by simply changing the com-
mon coefficient B of the exponential function gave predic-
tions of the spectroscopic data which were far outside the
experimental uncertainties. However, it was conceivable
that these discrepancies could merely reflect the lack of
proper vibrational averaging (over the diatom bond length)
in the form of the potential used in those tests. The tests have
therefore now been repeated using the proper vibrationally
averaged version of this potential.

The diatom vibrational averaging referred to above, de-
scribed in Ref. 32, was performed using the diatom bond
length expectation values tabulated in Table IV of Ref. 16.
Some of the resulting effective potential parameters for the
D,(v = 0,j = 0) + Ar potential used in the present calcula-
tions are shown in Table III. For the isotropic potential, the
vibrational averaging shifts the position of the zero Ry, and
the steepness to values in slightly better agreement with ex-
periment, but some discrepancies still remain. This is dem-
onstrated by the root mean square deviations in Table IV
associated with the predictions of total differential cross sec-
tions and second virial coefficients. However, a careful in-
spection of the calculated quantities shows that they are very
close to the calculations of the best fit “scattering potential”
as shown in Figs. 3 and 5. The direct comparison of the two
potentials reveals the same behavior. The potentials nearly
coincide within the thickness of the lines shown in Fig. 6.
Therefore we conclude that the vibrationally averaged
BC,(6, 8) potential is essentially consistent with our experi-
mental data.

Once a reliable effective V(R ) function is known, one

J. Chem. Phys., Vol. 80, No. 11, 1 June 1984

Downloaded 13 Mar 2004 to 129.97.80.195. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Buck, Meyer, and LeRoy: Anisotropic interaction potential of D,Ar

5595

TABLE V. Calculated j = 0—2 rotational excitation cross sections for D, + Ar at 85 meV in A%/sr.

6 /deg BC, (k = O)° BC, (vib)* BC, (vib) Best fit

Ref. 16 Ref. 16 B,=420K-1 (m= —3.022) Experiment
722 0.119 0.118 0.136 0.142 0.136(27)
85.4 0.140 0.139 0.165 0.168 0.174(19)
98.8 0.159 0.157 0.193 0.192 0.181(22)

*In the potential of Ref. 16, 8, =8, = 3.610 A",

can easily calculate the differential inelastic cross sections to
test the anisotropy of the short-range part of the given poten-
tial surface. This calculation was done here using the vibra-
tionally averaged potential associated with D,(v =0, j = 0);
this approach is not completely correct since the process
under study involves a transition from j = 0 toj = 2. How-
ever, in view of the relatively weak dependence of the vibra-
tionally averaged potentials upon j, this should be a fairly
good approximation. The inelastic cross sections obtained in
this way are shown in Table V. The results obtained directly
from the vibrationally averaged potential of Ref. 16 are
clearly lower than the experimental values by more than the
experimental uncertainty.?® In order to achieve consistency
with the inelastic cross sections, the short-range anisotropy
of the (v =0, j=0) spectroscopic potential’® must be
strengthened.
In the analysis of the spectroscopic data in Refs. 14 and
16, the exponent coefficient 3, was assumed to be the same
for both the isotropic (4 = 0) and anisotropic (4 = 2) radial
strength functions, because the available data were unable to
determine them independently. An investigation of the sen-
sitivity of that analysis to the parameters 3, and 3, showed
that the infrared van der Waals molecule spectra are quite
sensitive to the value of 5, but scarcely at all to the value of
B-. We therefore repeated the fits to the spectroscopic data
with the isotropic potential fixed as the function reported in
Ref. 16, and determined the potential anisotropy associated
with 3, values ranging from 3.0to 4.7 A~". For this range of
cases, the quality of fit to the spectroscopic data did not
change significantly, but the agreement with the measured
inelastic cross sections changed rather dramatically. The ap-
proach yielded anisotropy strength functions which, when
combined with the isotropic potential of Ref. 16, are in excel-
lent agreement with both spectroscopy and the present in-
elastic cross section measurements. The parameters defining
the anisotropy of the resulting best-fit potential (see Ref. 16)
are summarized in Table V1. Note that the values of Table
VI contain all the information for deriving the vibrationally

averaged potentials for different states of both isotope com-
binations. The associated parameters of the effective V,(R )
function, vibrationally averaged for D,(v = 0, j = 0), are:

B,=420A""1 m, =0,
A, =1292732¢V, €, =0.7054 meV,
Cy, = 20.539 eV AS, R,, =3.675A,

Cs, = 1.644 755 eV AS.

Although €, and R,,, are not very different from the values
obtained from the spectroscopy alone,'® the value of
ViR =2.7 A) = 24.7 meV is now some 23% larger than
before, and this change yields a single potential which repro-
duces both the spectroscopy and the differential inelastic
cross sections.

We therefore conclude, that with the isotropic potential
fixed as the A = O part of the BC,(6, 8) function of Ref. 16,
optimum agreement with both spectroscopy and the present
inelastic cross sections is obtained with the 8, = 4.2 A~!
potential anisotropy of Table V1. While the shape of the re-
pulsive part of the effective spherical potential is still slightly
less than ideal as far as the total differential cross sections are
concerned, this combined surface is in quite good agreement
with these data, and is at present the best three-dimensional
potential energy surface for this system. However, in future
efforts to devise a further improved surface for this system, it
seems clear that the second shape parameter m in Eq. (4)
must be treated as a variable and not fixed at zero as it was in
the previous (and present) analysis of the infrared spectro-
scopic data.

V1. COMPARISON WITH OTHER RARE GAS-
HYDROGEN MOLECULE INTERACTIONS

With the availability of an Ar-H, potential with a reli-
able repulsive anisotropy, we are now in a position to com-
pare this result with the Ne-H, potential derived from simi-
lar experimental sources'® and with the theoretical He-H,
potential of Ref. 1 (which agrees with the model of Ref. 3).
The best available potential surfaces for Kr-H, and Xe-H,

TABLE VI. Parameters defining the improved stretching-dependent BC;(6, 8) potential anisotropy which is consistent with both spectroscopy and scatter-
ing. The notation, potential form and isotropic (4 = 0) potential are those of Ref. 16. Energies are incm ™", lengths in A; for all functions B,=420A""and

m=0.
€2,k R :,k Cg,k A 2,k Cg,k
k=0 5.79 3.674 13 500.0 23920216 167 884.8
1 26.7 3.8759 29 600.0 278 178 547 2121 662.5
2 18.633 3.9314 5705.0 254 258 331 1953777.8
3 ce. e — 10 395.0 0.0 0.0
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TABLE VII. Parameters characterizing the potential minimum for rare gas-H, systems.

He-H, Ne-H, Ar-H,* Kr-H, Xe-H,
Ref. 1 Ref. 18 Ref. 14 Ref. 14
1A €/meV 1.20 2.85 6.30 7.29 8.12
R.,/A 3.40 3.30 3.58 3.73 3.93
v, €,/meV o.11 0.27 0.71 1.10 1.24
R../A 3.60 3.56 3.73 3.86 3.98
R,,/R.q 1.059 1.079 1.041 1.038 1.012
€/€ 0.092 0.095 0.113 0.151 0.153

*This work, see Sec. III and Table III.

are only expected to be reliable for the attractive part of the
potential since they are derived essentially from spectroscop-
ic data.’ The parameters of the corresponding potential
minima for ¥, and ¥V, are presented in Table VII. For Ar-H,
the potential derived in Sec. III is used. The general struc-
ture of the potential surfaces is quite similar. The potential
well depth of the isotropic part is roughly a factor of 10
deeper than that of the anisotropic part, while in the repul-
sive region V(R ) is much weaker than V,(R ). The absolute
values of the potential well depth show the behavior expect-
ed from polarizability considerations, increasing with the
mass of the rare gas atom. The position of the minimum
decreases from Xe to Ne, but increases slightly from Ne to
He, probably due to the anomalous weakness of interaction
involving He.

A question of considerable interest is the trend in the
relative anisotropies of these systems. In the attractive re-
gion this quantity may be expressed by the ratio €,/¢€,, which
increases from 0.092 for He, over 0.095 for Ne, 0.113 for Ar,
0.151 for Kr and to 0.153 for Xe. The analysis of rotationally
inelastic cross sections clearly shows that the strengths of the
anisotropy V,(R ) at the classical turning point of the isotrop-
ic repulsive wall V(R ) determines the inelastic transition
probabilities in the backward direction. Values for a collision
energy of E = 0.1 eV are given in Table VIII. The compari-
son shows the surprising result that the ¥, value, and thus
the transition probability, is largest for Ne, reflecting essen-
tially the fact that the Ne atom can penetrate much further
toward the H, than can the larger Ar, Kr, and Xe and there-
fore ‘“‘sees” a stronger anisotropy. This trend is not contin-
ued to He since the penetration is counterbalanced by
weaker forces so that roughly the same inelasticity occurs for
Ar and He. A similar behavior is also observed in the calcu-
lation of internal-rotation predissociation level widths,

TABLE VIII. Values of the anisotropy V, at the classical turning point R,
of the isotropic potential at the energy E = 0.1 eV for the H,-rare gas sys-
tems.

R./A V,/meV
He-H, 2.11 27.3
Ne-H, 2.26 34.1
Ar-H, 2.64 26.8
Kr-H, 2.80 29.3
Xe-H, 3.05 20.8

which are predicted to decrease from H,~Ar to H,—Kr to
H,-Xe, since they probe the same part of the potential >3

In order to illustrate the trends in shape and strength of
the components of these potentials, Fig. 7 presents plots of
V,(R)/€;, vs R /R, for A =0 and 2. While the isotropic
{1 = 0) functions all reduce to approximately the same form,
particularly for He, Ne, Ar, and Kr, the same is not true for
the reduced anisotropy strength functions. While there ap-
pears to be an easily-rationalized trend in the behavior of the
reduced V,(R /R, ) function with increasing size of inert gas
partner (see above), the H,~Kr curve definitely appears to be
out of order. Another perspective on the latter observation is
provided by Table VIII, which compares the anisotropy
strengths of the different surfaces at the turning point R, on
the corresponding isotropic potential associated with a colli-
sion at an energy of 0.1 eV. Figure 7 therefore illustrates both
readily understood trends in the potential energy surfaces
between H, and various inert gas partners, and the fact that
the best available surfaces for H,~Kr and H,-Xe require
significant further improvement. The latter fact should not
be surprising, since these surfaces are distinctly older and/or
less sophisticated than the best available surfaces for the oth-
er species.
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FIG. 7. Isotropic (¥,) and anisotropic (¥,) potential curves reduced by the

isotropic potential minimum parameters for the H,-rare gas systems.—
He-H,, ---Ne-H,, ——Ar-H,,—Kr-H,,--Xe-H,.
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FIG. 8. Reduced potential terms for the H,—Ar, Ne, He interactions. The
potentials are taken from this work, Ref. 18, and Ref. 1, respectively.

Finally, the completely reduced potentials for V(R )
and V,(R ) for H,-He, Ne, Ar are compared in Fig. 8. In spite
of the large differences of the size parameters and the partly
anomalous behavior of He, the result is surprising. The po-
tential shapes for V(R )and V,(R ) are nearly identical for the
three systems, but differ from each other in that V,(R) is
relatively a little steeper than V(R ). Note that this contrasts
with the complete conformality found for the Tang-Toen-
nies model.?
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