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A new method for calculating vibrational wave functions and level energies for van der Waals
molecules is proposed. It consists of a minimal secular equation calculation, including only
strongly coupled basis functions, followed by perturbation theory corrections to take account of
the effects of weakly coupled channels. The method is very efficient, and gives results accurate to
+ 0.001 cm ™! for Ar-H,. It is also readily applicable to predissociating states of van der Waals
molecules, and gives calculated level widths more accurate than any previous approximate
method. The method obviates the resonance search problem associated with direct coupled
channel methods for characterizing predissociating states, and is readily extendable to more

strongly anisotropic systems.

I. INTRODUCTION

The infrared spectra of van der Waals molecules are of
great importance in the determination of potential energy
surfaces for atom—molecule and molecule-molecule sys-
tems. More than a decade ago, Le Roy and Van Kranen-
donk! used the infrared spectra of McKellar and Welsh? to
determine a three-dimensional potential energy surface for
Ar-H,. Although other types of experimental data have
since become available,® the infrared spectra remain the
most comprehensive single source of information on this im-
portant prototype system. More recently, with the advent of
laser and molecular beam techniques, high-resolution in-
frared spectra have become available for systems such as
(HF),,* (CO,),,® and Ar-HCI;® these data undoubtedly con-
tain detailed information on the intermolecular potentials
concerned, although the computational problems involved
have so far prevented its extraction.

In order to determine an intermolecular potential from
infrared spectra, the potential surface must be parametrized
and the parameters determined by least-squares fitting to the
experimental frequencies. The major problem is the calcula-
tion of the energy levels of the van der Waals complex from a
trial potential surface; many methods exist for performing
such calculations,”2* but there is an inevitable trade-off
between accuracy and computational expense. The purpose
of the present paper is to introduce a new approximate meth-
od which allows accurate van der Waals level energies to be
calculated considerably more cheaply than was previously
possible. The new method also gives a natural breakdown of
the total energy and wave function into contributions from
zeroth order and perturbing channels, so that it is easy to
understand the physical effects determining the level ener-
gies and properties.

The need for a new method may be illustrated by con-
sidering the rare gas—H, systems, for which McKellar?* has
recently remeasured the infrared spectra at higher resolution
and resolved many new lines. The “secular equation” (SE)
method used for calculating level energies in earlier analy-
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ses’”8 gave results accurate to 4 0.03 cm ™!, which was ac-
ceptable when interpreting the older infrared spectra, whose
linewidths were around 0.5 cm—!. However, such errors
would obscure some of the information content of the most
recent spectra, where the linewidths are about 0.1 cm ™. If
the basis set is extended to the point where the accuracy is
acceptable, SE calculations become unwieldy, and prohibiti-
vely expensive for use in least-squares fitting of potential
parameters. However, the secular equation/perturbation
theory (SEPT) method described here provides the required
accuracy at a very modest computational cost.

The structure of this paper is as follows. Section II de-
scribes the theoretical background, and Sec. III derives the
new approximate method proposed here. Section IV de-
scribes our implementation of the method for the rare gas—
H, complexes, and tests it by comparison with close-cou-
pling calculations on Ar-H,. Section V then describes the
application of the method to the calculation of hyperfine
frequencies, which also contain important information on
the potential anisotropy for the rare gas—H, systems. A sub-
sequent paper® will describe the results of using this new
method to fit potential energy surfaces to the best available
experimental data for Ar-H,, Kr-H,, and Xe-H,.

Il. THEORETICAL BACKGROUND

After separating out the motion of the center of mass,
the full Hamiltonian for a van der Waals complex may be
written

H(R,q = — (#/2u)R ~* (*/dR )R

where R is the vector of length R joining the centers of mass
of the monomers, q represents their vibrational and rota-
tional coordinates, u = m,m,/(m, + m,) is the effective
reduced mass associated with the interaction of monomers
of masses m, and m,, / 2 is the angular momentum operator
associated with the rotation of the unit vector R, and H,(q) is
the sum of the vibration-rotation Hamiltonians of the isolat-
ed monomers.
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The exact eigenfunctions of this Hamiltonian may be
expanded as

VMR, q=R'SOMR gyl (R), 2)

where J and M are the quantum numbers for the total angu-
lar momentum and its space-fixed projection, and m is an
index identifying a particular eigenstate of the system. The
functions { X\fm, (R)} are the radial channel wave functions,
and {@ ™ (R, q)} are a complete set of channel basis func-
tions spanning the space of all coordinates except R, with
quantum numbers collectively denoted a. The Jand M labels
will often be omitted from channel specifications in the fol-
lowing sections, and are to be taken to be included in @ when
not specified explicitly.

Substituting Eq. (2) into the total Schrodinger equation,
premultiplying by @ (R, q)* and integrating over q and R
yields the usual set of coupled equations for a van der Waals
complex,

3 [ —8ua #/2)d*/dR? + U, (R) — EY, 8,,]

XmalR)=0, (3)
where E 7, is the total energy of the system and U7, (R)are

the matrix elements of the channel basis functions with the
operator U (R, q),

Ul [R)=(a'|UR,dq)a), 4)
where
UR,q=1%/2uR*+V(R,q) + H.(q), (5)

and the Dirac bracket notation containing only channel la-
bels implies integration over q and R but not R.

Sets of coupled equations such as Eq. (3) can be solved
directly, using methods such as those of Dunker and Gor-
don,’® Shapiro,'® Johnson,' and Danby.'? These procedures
are accurate and reliable, but are usually too expensive to use
in a least-squares fitting routine for determining potential
energy surfaces, and are also difficult to automate to find
specific bound states. It is therefore necessary to devise an
alternative method which is both accurate and computation-
ally inexpensive.

Approximate methods which have been used in the past
fall into three main categories. First, there are methods
based on distortion approximations,’*'” in which all off-
diagonal terms in Eq. (3) are ignored. A distortion approxi-
mation alone is seldom adequate, and it is usual to reintro-
duce the off-diagonal terms using perturbation theory. The
best way of doing this is by solving the Rayleigh—Schro-
dinger perturbation equation directly as a second-order in-
homogeneous differential equation.'® This form of perturba-
tion theory has the major advantage that the correction to
the wave function is determined directly, rather than being
represented by a sum over some inevitably incomplete radial
basis set. Such distortion/perturbation approximations are
qualitatively useful, but they are not sufficiently accurate
when several channels lie close together or share the same
threshold, as is the case for most states of atom—diatom van
der Waals complexes.

The second category consists of the secular equation
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(SE) methods, which are based on straightforward matrix
diagonalization in a basis set formed from products of angu-
lar and radial functions.'"”®!° These give good results if con-
vergence with respect to the basis set of radial functions is
fast; for example, in previous work on determining potential
energy surfaces for rare gas—H, systems,"”® it was found to
be sufficient to include only one radial basis function in each
channel. However, such a restricted basis set does not give
results accurate enough to account for high resolution spec-
tra, and the SE methods become quite expensive when many
radial functions must be included.

Thirdly, there are “adiabatic” methods, which attempt
to find a “best” basis set for describing the angular motion at
each value of the intermolecular distance R.2>?** These
methods have proved very useful for the ground states of
highly anisotropic systems such as Ar—-HC1?>?* and (HF),,**
but the nonadiabatic correction terms are too large for them
to be useful for the rare gas—H, systems.'® The adiabatic
methods are also not very accurate for excited states of the
van der Waals bending and stretching vibrations, so that
they will be of limited use in interpreting infrared spectra.

lll. THE SEPT METHOD

The method proposed here first uses a minimal secular
equation calculation to deal accurately with couplings
between nearby channels, and then uses the “linear inhomo-
geneous differential equation” (LIDE) form of perturbation
theory'® to take account of functions not included in the
original basis set. This procedure will be referred to as the
“secular equation/perturbation theory” (SEPT) method.

We choose the basis set for the SE calculation as a
{small) set of eigenfunctions of the distortion Hamiltonian
HP,

HP =Y |a){a| (—#/24) R ~{d*/dR )R

+ U(R, q) |a){a|, (6)

where the projection operator |a) {(a| projects onto channel
a. The eigenfunctions ()\f this Hamiltonian will be denoted
V2R, =R '®MR, q) y ., (R),and are represented in
Dirac notation as |an). The functions {y J,(R )} are easily
calculated from the diagonal channel potentials U7, (R ) us-
ing the Cooley algorithm.?¢

The secular equation Hamiltonian may be written

HSE = HP 4 HM | (7)
with

HY =3 3 (1 - 8,,) |a'n')(a'n'|UR, g)lan)(an|

(8)

where sums over a and » are restricted to the product func-
tions to be explicitly included in the basis set. This conven-
tion will be used throughout this paper, wherever indices a
and n (with or without primes) are summed over simulta-
neously. Thus H5E includes the off-diagonal terms between
the product functions in the basis set, as well as all the diag-
onal terms in the Hamiltonian. The difference H ‘' between
H5E and the exact Hamiltonian H is due solely to the trunca-
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tion of the sums in Eq. (8). The eigenvalues of H5E are de-
noted E $¥, and its eigenfunctions are

VER Q=R 'S Cpon PR,y L(R). (9

If the remainder of the total Hamiltonian,
H'=H — HE, is now reintroduced by Rayleigh-Schré-
dinger perturbation theory, the equation defining ¢!V, the
first-order correction to ¢5F, is

(H* —ER) Y= —(H' —E}) 77 (10)

Since H ' has no matrix elements between the secular equa-
tion basis functions, H ' ¥ is orthogonal to all of them. Con-
sequently, E ) is zero, and ¢! is also orthogonal to the basis
functions. Equation (10) thus reduces to

(H® —ER) )= —H' ¢ (11)
In terms of explicit channel functions, H ' ¢5F may be written

H'$E=R™'Y &R, agm(R), (12)
where )

ZralR) =3 (1= 800) UL (R) Cpw X (R)

= 3 Xawwr R) S | Koo (R') 8

X(l - 6aa') Uﬁa' (R I) Cona'n’ Xa,' n (R ,) dR’.
(13)
The second term in this equation simply ensures that the
result is orthogonal to any SE basis functions in channel a. If
we now write

YR Q=R'S MR, qyR), (14)

then projecting Eq. (11) onto each perturbing channel in turn
yields the uncoupled equations

[(—#/2u)d?*/dR? + U], (R) — E5F] ¥t (R)

= —8&ma (R). (15)
All the functions contributing to g,,, (R ) are known once the
secular equation problem has been solved. Thus Eq. (15) may
be solved for each channel function y {!}, (R ) in turn, using
the numerical method described in Ref. 18. The second-or-
der perturbation correction to the SE eigenvalue is simply
given by

Egz,l=f¢§fﬂ'¢93dr=zgm(le)xi:.’,, (R)dR . (16)

This procedure allows nearby perturbing channels to be
accurately accounted for, even if they are strongly coupled to
the zeroth-order channel. For well-separated channels (such
as those differing in v), it is not necessary to include any basis
functions explicitly in the diagonalization, and the second
term in Eq. (13) vanishes. If the channel separation is large
compared to the van der Waals stretching frequency, the
appropriate correction function y (., (R ) may be approxi-
mated’®;

) _ ~8&ma (R)

X B =R - vER) .
where U:T (R ) is some “effective” potential for the zeroth-
order state. This approximation is particularly useful for
evaluating the small shifts due to channels with asymptotic
energies which differ considerably from that of the zeroth-
order state, since it is then appropriate to make the further
approximation

— &ma (R)
E; —Ey + /) LI+ 1) =10+ 1]

(18)

where E,; and E,, are the monomer vibration-rotation level
energies corresponding to the perturbing and zeroth-order
channels, and /and /' are their respective end-over-end angu-
lar momenta.

Open channels require careful treatment, particularly if
the width due to predissociation into them is important. Two
situations may be distinguished: the state of interest may
itself be quasibound, in which case E 2, lies above the disso-
ciation threshold of the supporting channel potential; or the
effect of an open perturbing channel may be required. These
situations will be treated separately below, although they
often occur together.

In the first case, where the zeroth-order channel is
open, little modification to the scheme described above is
necessary. Quasibound solutions of H” may be defined us-
ing an Airy function boundary condition at the third turning
point R,?’; these solutions are then treated as being square-
integrable on the range 0 < R < R,, and simply used as basis
functions y 7, (R ) in the SEPT calculation. The only differ-
ence in procedure from the bound state case is that there is
now a contribution to the width from tunneling through the
centrifugal barrier; this may be calculated using a uniform
semiclassical approach, which in the single-channel case
gives widths accurate to a few percent.?” Such a treatment of
quasibound levels is in principle approximate in the SEPT
framework, for two reasons. First, the Airy function bound-
ary condition may yield resonance energies in error by up to
20% of the tunneling width, even in the single channel
case,?” and any such error is naturally propagated into the
SEPT results. Secondly, the use of the Airy function bound-
ary condition collapses bound state character which was ori-
ginally spread over the resonance width to a single central
energy, and such an approximate treatment may have effects
on the SE eigenvalues. However, as will be seen below, the
resulting errors in level energies and widths are only a frac-
tion of the widths themselves.

The case of open perturbing channels also requires care-
ful consideration, even if a large part of their effect is taken
into account by including a quasibound basis function in the
SE diagonalization as described above. For the open channel
case, Eq. (15) has continuum solutions, which cannot be ob-
tained by the method of Ref. 18. However, it is still possible
to obtain the width and shift contributions using a Green’s
function method, as described in Ref. 16. The outgoing
Green’s function for (open) channel g is*®

X' (R) =
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G} (R,R)= —w(RR")™

X[xi R)xi R)+iys R)xz(R)], for R<R’

G} (R,R')= —m(RR")™"

X[xa R)xo R )+iy, (R)x: (R")], forR>R’.(19)

whereR 'y .(R)andR ~'y .(R)aretheindependent regu-
lar and irregular eigenfunctions of the distortion Hamilton-
ian HP for channel a at energy E SE, normalized to delta
functions of energy. This Green’s function may be used to
solve Eq. (15) for the open channel case, giving

xL‘.L(R)=—fG:(R,R')gm.,(R')dR'. (20)

The width and shift contributions from channel g, I',,, and
4,,., may then be obtained from?®
r,,=-2Ims=s,,, 21)
4.,.=ReZ, , (22)

where =, , is just the contribution to £? from channel a
[Eq. (16)], which is now a complex quantity

£, = fgm (R)xY, (R)dR . (23)

When written explicitly in terms of y 7, (R ) and y . (R ), this
gives the usual Golden Rule expression for the width

Tow =27 |8 R)x; ®)aR| 24)

while the shift breaks down into two terms,

Bpo = =7 [ 80e RI: R)
x U X (R')20 (R)dR"| R
7 [ e R 12 (R)

X[J:xf, (R’) &ma (R’)dR’] dR. (25)

Equation (25) is not expensive to evaluate numerically, re-
quiring only two passes through the equally spaced R array.
The regular function y ; (R ) and the firstintegral over R " are
evaluated and stored at the mesh points on the first (out-
wards) pass, and then y / (R), the second integral over R’,
and the integrals over R are performed on the second (in-
wards) pass. In the present work, y - (R)and y ; (R) were
calculated numerically, by Numerov integration. This is in
contrast to earlier work,'®!'” where the uniform Airy approx-
imation was used, and allows the widths and shifts due to
perturbing channels with centrifugal barriers to be treated
properly. This was not possible previously, since the uniform
Airy approximation cannot be applied when the supporting
potential has three classical turning points.

This procedure for calculating the level shift achieves
the same advantage for the open channel case as the LIDE
method provides for closed channels. All (bound and contin-
uum) levels of the perturbing channel are implicitly included
in a single operation, so that the question of convergence of a
radial basis set does not arise.

IV. RESULTS FOR Ar-H,

The rare gas—H, van der Waals complexes are weakly
anisotropic systems whose eigenstates are well described by
space-fixed quantum numbers. Their states are character-
ized by the total angular momentum J, the diatom vibration
and rotation quantum numbers v and j, the end-over-end
angular momentum of the complex /, and the stretching
quantum number of the van der Waals bond n. The rigorous-
ly conserved quantities (neglecting nuclear hyperfine effects)
are J and the parity p = (— Y ', but the other quantum
numbers are also nearly conserved. The appropriate channel
basis functions are thus products of H, vibration—rotation
eigenfunctions and space-fixed total angular momentum ei-
genfunctions, ®¥ (R, q)=r""4, (n ¥ (R, ).

The states observed in the spectra of the rare gas—H,
systems are all n = 0 van der Waals stretching states, with
H, in states correlating with v = O and 1 and j<3. The domi-
nant coupling occurs between zeroth-order states of the
same 7 but different / within each (v, j, /) manifold. We have
therefore implemented the scheme described in Sec. III as
follows: for each total J, parity p, and diatom (v, j) level, the
n = 0 eigenvalues and eigenfunctions of the distortion Ha-
miltonian [Eq. (6)] are calculated using the Cooley method.®
The SE Hamiltonian matrix is then constructed in a basis set
consisting of these n = 0 levels (including quasibound levels,
if any) for all allowed values of /. This matrix (which is no
bigger than 4 X 4) is then diagonalized to obtain the SE eigen-
values {E ¥} and eigenvectors {c,,,, }. The additional con-
tributions due to the channels so far included are then evalu-
ated using Egs. (13), (15), and (16), with the numerical
method of Ref. 18, and those due to the open channels using
Egs. (24) and (25). Finally, the shifts due to closed channels
differing inj and/or v and due to open channels differing in v
are calculated from Egs. (18) and (16), and the widths and
shifts due to open channels differing in j are calculated using
Egs. (24) and (25).

The fundamental constants used in the present work are
summarized by the single number #°/2 = 16.857 630
amu cm ™' A2, The matrix elements of the H, stretching
coordinate £ between vibration-rotation functions,
(v, jIE* |[v',7'), were calculated from the potential curve of
Schwartz and Le Roy;*® these matrix elements and the H,
level energies used here are listed in Ref. 30. For Ar-H,, the
effective reduced mass was taken to be 1.918 865 04 amu,
and the differential equations were solved on an equally
spaced radial mesh of 183 points from R = 2.2t0 9.5 A.

In order to test this method, we have performed calcula-
tions on states of Ar-H, correlating with H, in its v =1,
J = 2level. These are the excited states involved in the S,(0)
band of the Ar-H, spectrum, which is the band most sensi-
tive to the potential anisotropy. The calculations described
below use the BC,(6, 8) potential of Le Roy and Carley,® for
which close-coupling calculations of these levels have been
performed previously.'® In order to allow direct comparison
with the results of Ref. 16, the basis sets used in this test were
restricted to channels correlating with H, in v = 1, with
j =0 and 2. However, the effects of extending the basis set
were also examined, and will be described later in this sec-
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TABLE 1. Comparison of distortion (D), secular equation (SE), and secular equation/perturbation theory
(SEPT) level energies and widths with the close-coupling (CC) results of Ref. 16, for Ar-H, (v = 1,/ = 2) levels
on the BC, (6, 8) potential of Ref. 8. These calculations include only those channels correlating with H, (v = 1,
J=0)and (v =1,j = 2). Level energies are given in cm ™' relative to the v = 1, j = 2 threshold of H,.

l J ED E?:' ESEP’I‘ ECC rSEP‘l‘ FCC

0 2 —23.028 -23.234 —23.239 —23.238 0.0393 0.0394
1 1 —22.671 — 22.685 —22.653 —22.653 0.0546 0.0530
1 3 —22.127 —22.239 —22.238 — 22237 0.0414 0.0414
2 0 —20.801 --20.801 —20.728 —20.727 0.1126 0.1103
2 2 —19.470 —19.292 —19.310 —19.311 0.0235 0.0235
2 4 — 20.006 - 20.083 —20.078 —20.078 0.0420 0.0420
3 1 —17.293 —17.279 —17.244 —17.243 0.0556 0.0551
3 3 — 16.011 — 15.927 —15.942 — 15.943 0.0237 0.0237
3 5 —16.770 — 16.829 —16.822 — 16.823 0.0411 0.0411
4 2 — 12.879 — 12.852 — 12.828 — 12.828 0.0410 0.0408
4 4 — 11.617 — 11.567 — 11.580 — 11.580 0.0219 0.0219
4 6 -~ 12.482 —12.530 —12.523 —12.523 0.0388 0.0388
5 3 — 7.537 — 7.508 — 7.489 — 7.490 0.0322 0.0319
5 5 — 6.288 —6.253 — 6.265 —6.265 0.0191 0.0191
5 7 — 7214 —7.252 —7.249 —7.249 0.0351 0.0351
6 4 — 1.347 —1.319 — 1.306 — 1.306 0.0246 0.0244
6 6 —0.129 —0.103 —0.113 —0.113 0.0156 0.0156
6 8 — 1.080 — L.115 ~ 1.109 — 1.109 0.0298 0.0298
7 5 5.465 5.489 5.498 5.496 0.0687 0.0647
7 7 6.576 6.594 6.589 6.580 0.1596 0.1484
7 9 5.677 5.649 5.656 5.651 0.0825 0.0766
8 6 12.761 12.783 12.792 12.633 1.234 1.088

8 8 13.933 13.950 13.950 13.654 1.951 1.587

8 10 12.954 12.931 12.936 12.763 1.335 1.140

tion; fully converged basis sets were used in the actual fitting
of potential surfaces.’

The SEPT results for both level energies and widths are
compared with the close-coupling results in Table I. It may
be seen that the largest error in the level energies is about
0.001 cm ™! for levels which cannot predissociate by tunnel-
ing, and a fraction of the width for those which can. The
larger error for quasibound states simply reflects the errors
inherent in the Airy function boundary condition method
for locating quasibound states.?” The calculated widths are
also accurate to about 1% except for the quasibound states.
This accuracy is entirely adequate for performing fits to
McKellar’s most recent infrared spectra,?> which have esti-

mated errors in the line positions of less than 0.02 cm—!. The
complete set of calculations summarized in Table I took only
24sona VAX 11/750.

As mentioned above, the shifts due to perturbing chan-
nels differing in v and  also requires investigation. The SEPT
level energies may be broken down into a sum of a zeroth-
order (secular equation) part and contributions from differ-
ent perturbing channels

ESST=ES + B\ + Bl +ESF +Eim +ENF
(26)

Here, E!, is the contribution from channels of the same v
and j as the zeroth-order state, excluding those (n = 0) levels

TABLE II. Contributions of different perturbing channels to level energies for representative states of Ar~H,

p=1,j=2)
g ES E!, Elf El} E E%F EST
0 2 —23232 0028 00237 —00138 00059  —00137 —23.2603
2 0 -—208006 00 00721  —00153 00079  —00190 —20.7549
2 1 —202406 00 0.0 —00136 00056  —00128 —20.2613
22 —192917 00332 00150  —00101 00038  —00083 — 19.3245
23 —19.0745 —00172 00 —00105 00037  —0.0081 — 19.2066
2 4 -200832 —00193 00240 —00134 00058  —00135 —20.099
4 2 128522 —00051 00291  —00123 00057  —00134 —12.8481
4 3 120809 —00171 00 ~00100 00039  —00086 — 12.1127
4 4 115670 —00273 00146  —00088 00034  —00075 —11.5926
4 5 116377 —00165 00 —00094 00034  —0.0075 — 11.6676
4 6 —125301 —00148 00216 —00120 00052  —00I121 — 12.5421
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already in the SE basis set; E/. is the contribution from
channels with »' = v and j' < (only /' =j — 2, which gives
open channels, contributes in the present case); £/, is the
contribution from channels withj’ >/ (again, only /' =j + 2
contributes in the present case); and E?~ and E,* are the
contributions from channels with v’ <v and v’ > v, respec-
tively.

Examples of these different contributions to the level
energies of Ar-H, (v = 1, j = 2) on the BC; (6, 8) potential
are given in Table II. Apart from zeros arising from the ab-
sence of perturbing channels in certain categories, all the
sources of level shifts are significant compared to the experi-
mental uncertainty. As might be expected, the largest of the
correction terms are those involving coupling to excited van
der Waals stretching states within the same (v, /) manifold.
The lack of cancellation between E?~ and E.7 is at first
sight surprising; it arises because the diatom matrix elements
(v,jIE* |v',j') are very different for v'=v+1 and
v’ =v — 1. This is true even for a harmonic oscillator: for
example, the harmonic oscillator matrix element
(v, O|€ |v + 1, 0) is proportional to (v + 1)!/?, sothat the neg-
ative shift due to perturbing channels of higher v will tend to
be larger than the positive shift due to those of lower v. Thus
the overall level shift due to perturbing channels off-diag-
onal in v is always likely to be negative.

V. HYPERFINE SPECTRA

The hyperfine spectra of van der Waals molecules pro-
vide valuable additional information on the anisotropy of the
intermolecular potential. For the rare gas—H, systems, pro-
ton hyperfine spectra have been observed by Waaijer and
Reuss,?' and a method for calculating the spectra, based on a
limited secular equation calculation, has been described by
Waaijer et al.>® However, the SEPT procedure provides a
rather more efficient means of calculating the spectra, and
also takes account of some contributions neglected by
Waaijer et al.

For complexes of ortho-H, with rare gases, the total
nuclear spin of the H, molecule (/ = 1) couples with the total
mechanical angular momentum J to form a resultant F
which can take values J — 1, J, and J + 1. States of the same
v,J, I, and J, but different F, are split by the hyperfine Hamil-
tonian H¥F, and transitions between them with AF = + 1
are allowed.

The hyperfine Hamiltonian may be written as a sum of
spin-spin and spin-rotation terms,

HHF =HSS +HSR . (27)

The matrix elements of H> and H® in the space-fixed basis
set have been given in Ref. 32. They are diagonal in Fand its
space-fixed projection M, and are independent of M:
(JUFMp|HS|j1'T' FMg) =8, (= 1)+ 7 1d

X[30(27 + 1) (2 + 1) (2T + 1) (2J' + )] V2

JJ' 21 (T J 2 j2j’)
X[ll F} {j'j l] (ooo’ (28)
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(JUFMp|HS® | J1'T'FMp) =6y 8, (— 1) TF+i*1 ¢
X [6(27 + 1) (27" + 1) (2 + 1)j(j + D'/

<[ TA T ) @

For H,, the spin-rotation and spin-spin coupling constants ¢
and d are®

¢=113.904 kHz,
d = 288.355 kHz. (30)

The resulting matrix elements are typically 10° times smaller
than the smallest separation between different n = 0O levels
for Ar—H,, so that effects which are second order in HYF are
completely negligible. The hyperfine energy of a state may
thus be evaluated simply by calculating the expectation val-
ue of HF over the SEPT wave function. Expanding this by
perturbation theory in orders of H ' yields

<HHF>SEPT=2 (HHF>(k), (31)
k
where the leading terms are
<HHF >(0)=J¢§|EHHF 'p?nE d'T, (32)
(HYO =2 [ g H yar, 33)
CHPEYO = [ EE - O dr. (o4

Each of these simplifies considerably when written in terms
of explicit channel functions. Since ¢y is restricted to com-
ponents with j = 1, differing only in /, and H"" has no ma-
trix elements off-diagonal in /, the zeroth-order term simpli-
fies to

(HT)YO =% ¢l WL J,F), (35)

where / and J are the quantum numbers corresponding to
channel g, and

W(l,J, F)= (\LJFM.|H" [1lJFM,) . (36)

The first-order correction has no contribution from perturb-
ing channels withj = 1,since y ), (R )is orthogonal to all the
{x 3. (R)} functions included in the SE basis set for channel
a, and H"F has no matrix elements off-diagonal in /. How-
ever, there are matrix elements of #5° connecting channels
of the same / and J but different j (only j = 3 contributes
here). The first-order correction thus takes the form

(H¥F YO =23 ¢ Y(,J, F)
In

XJX{M (R)xw (R)dR, (37)

where the subscripts a have been explicitly replaced by j, /,
and J, and

Y(,J,F)= (1JFM|H"S |3lJFM;) . (38)

The second-order correction formally contains contribu-
tions from perturbing channels withj = 1 and 3, but in prac-
tice only those for j = 1 are significant. Once more, since
HYF has no matrix elements off diagonal in /, the second-
order term reduces to
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TABLE III. Calculated hyperfine frequencies for Ar-H, (v =0, j = 1) us-
ing the BC, (6, 8) potential (kHz).

First- Second-

order order Ref. 31 Ref. 31
I J F F' SE corr.  corr.  SEPT (cal) (expt)
0 1 0 1 49561 0.0 —0.045 495.56 497.12 489.94(15)
0 1 1 2 3792 00 -—0.015 3790 3842 359215)
1 2 1 2 30478 0.255 — 0.034 305.00 305.15 303.68(15)
2 1 2 1 11433 —0.045—0.017 11427 11477 112.30(15)
2 3 2 3 26465 0.254 —0.034 264.87 264.89 264.25(15)

(HHF )(2) — z [W(l, J,F) _ <HHF)(O)]

1
x [ Do (R1T 4R, (39)

For the five hyperfine transitions of Ar-H, observed
experimentally by Waaijer and Reuss, the contributions of
these different terms, calculated using the BC; (6, 8) poten-
tial, are listed in Table III. It may be seen that the first-order
correction terms are larger than the experimental uncertain-
ties, so that it is important to include them. There are signifi-
cant discrepancies between the calculated and experimental
values; since the hyperfine frequencies are directly depen-
dent on the anisotropy of the potential for an atom interact-
ing with H, (v =0, j = 1), it would clearly be desirable to
include them when performing least-squares fits to deter-
mine potential energy surfaces.

The hyperfine frequencies calculated by Waaijer and
Reuss®! for the BC, (6, 8) potential are given in Table III for
comparison. They differ from the present results by up to 1.7
kHz, which is more than 10 times the experimental uncer-
tainty. There are several reasons for this. First, our SE basis
consists of eigenfunctions of the distortion Hamiltonian,
whereas theirs consists of eigenfunctions of the central Ha-
miltonian (neglecting anisotropic terms). Thus, some contri-
butions which appear in their formulation to arise from cou-
plings to excited van der Waals stretching states are
accounted for in zeroth order here. Their calculations on the
BC, (6, 8) potential did not include such excited states, al-
though the formalism of Waaijer ez al.>? would have allowed
them to. Our procedure of evaluating the effects of n>0
functions by perturbation theory is essentially equivalent to
a secular equation calculation using a fully converged radial
basis set. Secondly, Waaijer ef al. neglected the first-order
terms involving perturbing states with j = 3; as seen above,
this results in small but not negligible errors. Thirdly, the
“Carley” potential used by Waaijer and Reuss differed
somewhat from the BC, (6, 8) potential used here, since they
used only the “k = 0” term and did not carry out the proper
vibrational averaging over the v = 0,j = 1 state of H,.

VI. CONCLUSION

We have developed a new theoretical method for calcu-
lating level energies of van der Waals molecules. The method
uses perturbation theory to correct for the incompleteness of
asmall “secular equation” calculation. It thus eliminates the
main deficiency of secular equation methods, which is that it
is usually necessary to include a large number of relatively
unimportant functions in the basis set to achieve conver-

gence. The new method is very efficient, and gives results in
good agreement with close-coupling calculations for Ar-H,.
1t is readily extendable to more strongly anisotropic systems,
simply by choosing a secular equation basis set consisting of
whichever distortion eigenfunctions lie close in energy to the
state of interest. This basis set will always be much smaller
than that required for convergence of a simple secular equa-
tion calculation, so the new method will always give a con-
siderable saving in computer time.

The method is applicable to both bound and predisso-
ciating states of van der Waals complexes. It does not suffer
from the search problems associated with the direct numeri-
cal solution of coupled equations. The method also makes it
relatively easy to identify the parentage of a particular state,
and to gauge the importance of coupling to individual per-
turbing channels. This feature of the method will be particu-
larly valuable when the wave functions are used to calculate
molecular properties involving expectation values and spec-
troscopic intensities.
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