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A reliable new three-dimensional potential energy surface is obtained for the H2–Ar system using
an exchange-coulomb potential model with five parameters determined empirically from a
least-squares fit to experimental data. This surface fully accounts for new high resolution IR data,
virial coefficients, and vibrational transition pressure-shifting coefficients used in the analysis, and
yields excellent predictions of elastic and inelastic scattering cross sections and hyperfine transition
intensities not included in the analysis. Quantitative comparisons with the best previous empirical
potential and a high quality fullyab initio potential are also presented. ©1996 American Institute
of Physics.@S0021-9606~96!00331-5#
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I. INTRODUCTION

This paper has two main objectives. One of these is
exploit McKellar’s new high resolution discrete infrare
spectra1 for H2–Ar and D2–Ar to obtain a reliable new po-
tential energy surface for these species, which accurately
plains a wide variety of experimental data and has good p
dictive ability. The other is the more general objective
developing and testing an improved model for represent
multidimensional atom–molecule and molecule–molecu
potential energy surfaces. In the latter regard, attention
focussed on the exchange-coulomb~XC! model2–4 which
was originally developed for describing the interactions
closed shell atoms, and has been shown to yield poten
energy curves for rare gas systems that reliably predic
wide variety of properties.5 More recently the model has
been modified to forms appropriate for interactions involvin
molecules,6–9 and has been used to obtain high quality tw
dimensional potential energy surfaces for He–CO, Kr–N2,
and Ar–N2.

10–12 An objective of this paper is to test the
utility of the XC model for representing full three
dimensional atom–diatom potential energy surfaces. To
end, it is used in a fit to the new higher resolution discrete
spectra for isotopic H2–Ar, seeking to obtain an improved
potential energy surface for this system.

The first ever quantitative determination of full three
dimensional atom–diatom potential energy surfaces from
perimental data, reported in 1974,13 was based on an analysi
of the fully resolved portion of McKellar and Welsh’s dis
crete IR spectra for the H2–Rg ~Rg5Ar, Kr, and Xe!
systems.14 Since that time, improved empirical surfaces f
those systems, based on both better data and more rea
radial potential forms, have been published.15–18 Impressive
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developments in experimental methodology over the past d
cade and a half have led to the measurement of exquis
high resolution spectroscopic data for a wide variety of oth
atom–molecule and molecule–molecule systems. Howev
quantitative analyses of those data to obtain detailed pote
tial energy surfaces have only been reported for a handful
species, and the H2–Rg systems are still the only ones fo
which these surfaces explicitly incorporate the dependen
on the intramolecular bond coordinates. For example, wh
Hutson has determined detailed potential energy surfaces
Ar–HCl and Ar–HF which accurately accounted for all o
the available microwave and IR spectra for all common is
topomers, the dependence of these surfaces on the dia
bond lengths was treated approximately.19,20Similarly, while
the pioneering three- and four-dimensional surfaces f
Ar–H2O, Ar–NH3, and ~HCl!2 determined by the Saykally
group depend on all van der Waals degrees of freedom,21–23

the molecules forming these complexes are treated as ess
tially rigid.

The reasons for this situation are twofold. Until the cur
rent decade, limits to both computers and computation
methods made iterative accurate modeling of experimen
data for complexes formed from strongly anisotropic or non
hydride molecules prohibitively expensive. This restriction i
now being lifted,24–30 and an underlying problem is becom-
ing increasingly evident as more complicated systems a
studied. It is associated with devising functional forms ab
to accurately model a multidimensional potential energy su
face using only a modest number of empirical parameters.
the earliest quantitative multidimensional analyses of atom
diatom systems, potentials were expressed as a nested su
a power series in the diatom stretching coordina
j5(r2r 0)/r 0 with a Legendre series for the relative orien
tation dependence,

V~R,r ,u!5 (
l50

(
k50

jkPl~cosu!Vl,k~R!, ~1!

whereR is the distance from the diatom center of mass to th

ia,
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2640 Bissonnette et al.: PES for Ar–H2
atom,u the orientation of the diatom relative to the axisR of
the complex,r the diatom bond length, andr 0 a reference
length. However, while general and flexible, the expans
of Eq. ~1! typically requires at least two empirical paramete
for each radial strength functionVl,k(R), and without the
introduction of external constraints, even for the relative
simple H2–Rg systems the number of parameters required
define the surface threatened to become excessive.13,18

For complexes more strongly anisotropic than tho
formed from H2, empirical potentials based on independe
parametrization of theVl,k(R) functions of the double ex-
pansion of Eq.~1! become impractical, as the numbers
variable parameters required to define the potential prope
would outstrip the information content of the data long b
fore a reliable potential was obtained. A first step in addre
ing this difficulty has been the adoption of Pack’s approac31

of replacing the linear Legendre potential expansion of E
~1! by linear Legendre expansions in the anisotropy of p
rameters defining the radial behavior of the potential. T
was tested for the H2–Rg systems

18 and successfully used to
define the recommended fitted surfaces for Ar–HF, Ar–HC
Ar–H2O, and Ar–NH3.

19–22However, even with the induc-
tion and dispersion coefficients defining the attractive part
the potential held fixed at theoretical values, this approa
still required the introduction of a substantial number of em
pirical parameters~21 or 22 for the Ar–HX systems and 12
or 13 for the others!, and the associated difficulties would b
greatly compounded if one attempted to take account
monomer vibrational stretching in the same way.

Hutson considered the latter problem when selecting
means of representing the diatom-stretching~j! dependence
of the Ar–HF and Ar–HCl potentials. He decided that
view of possible ambiguities regarding the relative impo
tance of linear, quadratic, and higher-order terms, the s
plest solution was to approximate the bond-length dep
dence by an effective dependence on the mass-redu
vibrational quantum number.19,20 The resulting surfaces ac
curately explain spectroscopic transition frequencies a
other system properties which are essentially ‘‘diagonal’’
the diatom vibrational state index. However, the absence
explicit bond-length dependence means that they can
yield predictions of ‘‘off-diagonal’’ properties such as vibra
tional predissociation rates and vibrationally inelastic col
sion cross sections, or take account of centrifugal stretch
of the diatom monomer.

In other work it has been shown that even the effecti
two-dimensional~R- andu-dependent! potential determined
from accurate fits to high resolution data for a system
simple as He–CO can have substantial mod
dependence.10,32–34Moreover, the problem of devising ap
propriately sophisticated potential forms which do not r
quire an excessive number of empirical parameters to de
them will clearly become increasingly severe when the co
ponent atom and/or diatom monomers are replaced by m
complex species. The present approach to this problem i
express the potential in terms of theoretically based functio
which incorporate the shapes of the component molecu
and can be conveniently scaled to optimize the overall agr
J. Chem. Phys., Vol. 105,
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ment with experiment. The experience gained here shou
facilitate the extension of this approach to more complicate
atom–molecule and molecule–molecule systems.

There are a number of recent approaches for constru
ing potential energy surfaces for interactions involvin
closed shell species that are based on energy compone
which are available from relatively inexpensiveab initio cal-
culations. These models2–6,10–12,35–39can realistically repre-
sent the most important features of the interaction, includin
effects due to the internal bond-length dependence of t
individual monomers. All of these methods employ the be
available long-range multipolar interaction energies, co
rected for the neglect of charge overlap effects through t
use of multiplicative damping and corrector functions, t
model the main attractive part of the interaction energ
While the other approaches use supermolecule se
consistent field~SCF! dimer interaction energies to represen
the mostly repulsive part of the interaction energy, the X
model employs the Heitler–London interaction energy~the
sum of the first-order Coulomb and exchange energies! for
this purpose. Since the latter calculation only requires th
SCF wave functions for the interacting monomers, the X
model is the easiest to apply. This model also incorporate
modest number of scaling parameters whose introduction h
been found to be necessary to obtain high quality potent
energy surfaces for both~rare gas!–~rare gas! and two-
dimensional~rare gas!–molecule interactions.5,10–12In pass-
ing, we remark that in the hands of Aziz and
co-workers,5,40,41 the analogous flexibility inherent in the
Hartree–Fock-dispersion~HFD! potential energy model35

has been used to determine high quality~rare gas!–~rare gas!
potentials.

In this paper, the XC model is used to obtain a fu
three-dimensional state-of-the-art potential energy surfa
for the prototype atom–diatom system, H2–Ar. The adjust-
able parameters in the model are determined by fitting to t
improved and extended IR data of McKellar,1 to pressure
shifting coefficients for the Raman transitions of H2 in Ar
measured by Farrowet al.42 and Bergeret al.,43 and to the
second virial coefficients of Brewer and Vaughn44 and
Schramm and co-workers.45 H2–Ar has been one of the most
extensively studied atom–diatom systems; a wide variety
high quality experimental data has been collected and h
been used in determining and/or testing various potential e
ergy surfaces. Moreover, the best empirical surface18 for
H2–Ar, known as the TT3 potential, has been used as a ref
erence against whichab initio methods for calculating van
der Waals interaction potentials can be tested.46 On the other
hand, tests against some data which were not used in
determination show that the TT3 potential has some deficien-
cies. In particular, the proton spin–lattice relaxation me
surements of Lemaireet al.47 suggest that there are some
problems with its short-range anisotropy. In addition, Gree
found48 that pressure shifting coefficients for theQ1(J)
Raman lines predicted from this potential surface were
very substantial disagreement with experiment, a proble
which has been attributed to deficiencies in thej dependence
of its short-range repulsive wall.48,49 Together with the fact
No. 7, 15 August 1996
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2641Bissonnette et al.: PES for Ar–H2
that greatly improved spectroscopic data have become av
able for this system,1 this motivated our choice of H2–Ar as
a system for testing the utility of the XC model for determin
ing a full three-dimensional atom–diatom potential energ
surface.

The three-dimensional XC potential model for H2–Ar is
described in Sec. II. The experimental data used to help c
struct the final potential energy surface, and the metho
used to simulate and fit to the data, are discussed in deta
Secs. III and IV. The optimized XC potential energy surfac
for H2–Ar is then presented and compared with other pote
tials reported in the literature in Secs. V–VII, while a brie
summary of the more important features of this work is co
tained in Sec. VIII.

II. THE EXCHANGE-COULOMB MODEL POTENTIAL
FOR H2–Ar

The Jacobi coordinatesr5r r̂ , R5RR̂, andu are conve-
nient for describing the dynamics of the H2–Ar system, since
the potential energy depends only on the scalar quantitiesR,
r , andu. Here,r̂ is a unit vector directed along the axis of th
diatom of bond lengthr , and R̂ is a unit vector which is
directed from the center of mass of the diatom to the A
atom, which lies a distanceR from the H2 center of mass.
The angle between these two units vectors isu5cos21~r̂•R̂!.

In the variant of the XC model2–4,6used here, which is a
diatom bond-length-dependent extension of the tw
dimensional XC potential energy models use
previously,10–12 the intermolecular potential is written as

V~R,u,j!5FEHL
~1!~R,u,j!1DEC~R,u,j!

5FEHL
~1!~R,u,j!2G10~R,u!

3 (
n56~2!

10

f n~R,u!Cn~u,j!R2n, ~2!

where j[(r2r 0)/r 0 , and r 051.448 739a0 is the expecta-
tion value ofr for H2 in its ground rovibrational level.

50 The
quantityF is an empirical function which will be discussed
in more detail below,EHL

~1! is the first-order Heitler–London
energy, andDEC , the main attractive part of the potentia
energy model, is an individually damped, overall-correcte
dispersion plus induction energy series representing
second- and higher-order Coulomb interaction energy. T
individual damping functionsf n take account of non-
negligible charge overlap effects neglected in theR2n mul-
tipolar expansion of the second-order Coulomb interacti
energy, and prevent these inverse-power terms from dive
ing at smallR.4,6,51,52The overall corrector functionG10 rep-
resents the effect of other higher-order terms not explici
included in the potential model.4,6

The Heitler–London interaction energyEHL
~1! was evalu-

ated using theCADPAC program,53 including the Hayes–
Stone perturbation theory program.54 The calculations are
analogous to those reported earlier for a fixed H2 bond length
of r51.4a0 ,

7 and are based on high quality SCF wave fun
tions for the isolated monomers.55 Heitler–London energies
were obtained at seven equally spaced values
J. Chem. Phys., Vol. 105,
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R(3a0<R<9a0), four values ofu, and five H2 bond lengths
(1.1a0<r<1.9a0). These computed energies were fit to the
form

EHL
~1!~R,u,j!5K exp@2~R2Rs!~b01b1z1b2z

2!#

3 (
l50~2!

6

(
k50

3

(
p50

3

ap,k
~l!zpjkPl~cosu!, ~3!

where Pl~cosu! is a Legendre polynomial,
z[(R2Rs)/(R1Rs), and a0,0

(0)51. Note too~see Table I!
that many of theap,k

(l) expansion parameters allowed by these
summation limits turn out to be statistically insignificant, and
are not required to give an accurate fit.

The reference distanceRs appearing in Eq.~3! can be
chosen in many ways, but a particularly accurate and eco
nomical ~in terms of the number of parameters! representa-
tion of EHL

~1! is obtained ifRs is set equal to the angle-
dependent position of the radial potential minimum for the
momomer stretching coordinate fixed atj50:

Rs5Rm~u,j50!5 (
l50~2!

4

Rm
~l!Pl~cosu!. ~4!

In practice, an initial representation ofEHL
~1! is obtained using

some reasonable fixedRs value ~e.g.,Rs56.8a0!, and the
resultingEHL

~1! function combined withDEC to yield an over-
all potential from which the actualRm(u,j50) function may
be determined. Iteratively repeating the fit to theEHL

~1! data
with Rs set at successively refined representations of
Rm(u,j50) yields rapid convergence to the desired self-
consistent form. This approach yields a very precise repre
sentation of theab initio points, its root mean square devia-
tion being less than 0.1%; the resulting constantsK, bi , apk

(l),
andRm

(l) defining thisEHL
~1! function are listed in Table I.56

The Heitler–London term is clearly basically repulsive, de-
caying exponentially with increasingR. Note that our par-

TABLE I. Dimensionless parameters$ap,k
(l)% defining our fit of Eq.~3! to the

Heitler–London energies for the XC potential of H2–Ar. Other parameters
involved in the fit are: K5257.988831026Eh , b051.892 368a0

21,
b150.306 504a0

21, b250.125 22a0
21, while the scaling distance expansion

parameters of Eq.~4! are: Rm
(0)56.783 754a0 , Rm

(2)50.041 267a0 , and
Rm
(4)520.002 328a0 .

l p k50 k51 k52 k53

0 0 1.0 1.438 59 0.757 37 0.0794
0 1 0.0 3.811 75 5.146 5 1.7411
0 2 0.0 3.680 8 11.684 6 7.334
0 3 0.0 2.731 4 9.880 8.451
2 0 0.160 895 0.677 00 0.943 95 0.6064
2 1 20.092 55 0.380 5 2.360 4 3.350
2 2 0.291 51 0.864 6 3.895 5.513
2 3 0.0 0.0 3.483 0.0
4 0 0.009 315 0.043 09 0.117 96 0.1509
4 1 20.008 52 0.0 0.104 4 0.0
4 2 0.043 11 0.198 4 0.0 0.0
4 3 20.115 5 20.585 5 21.911 0.0
6 0 0.000 739 0.003 97 0.0 0.0
6 1 0.0 0.0 0.0 0.0
6 2 0.0 0.0 0.0 0.0
6 3 0.0 20.132 21.065 0.0
No. 7, 15 August 1996
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2642 Bissonnette et al.: PES for Ar–H2
ticular definition ofRs affects the analyticrepresentationof
EHL

~1! but it should have negligible effects on the resultin
potential function.

The multipolar representation of the long-range intera
tion energy used inDEC in Eq. ~2!, is based on the best
available values of the coefficientsCn(u,j),

57,58 but a key
feature of the XC model is the corrector and damping fun
tions,G10 and f n , which appear in the second term of Eq
~2!. They are not calculated directly for the interaction o
interest, but rather are estimated by scaling the analog
functions for the nonbonded H2(

3Su
1) interaction, which are

known essentially exactly:4,52

f n~R,u!5@12exp~2AnSR2Bn~SR!22Dn~SR!3!#n,
~5!

G10~R,u!51141.34 exp~20.858 8SR!.

The constantsAn , Bn , andDn are known for the H2(
3Su

1)
interaction~for whichS[1!,52 and are listed in Table II. The
scaling factorS depends on the relative sizes of H2(

3Su
1)

and H2–Ar, and is used to map the functions derived for th
H–H interaction onto the range of the H2–Ar potential. The
recommended6,10–12definition of S is one which introduces
anisotropy into the damping and corrector functions,S
5 Rm

H–H/Rm(u,j 5 0), whereRm
H–H5 7.82a0 is thepositionof

the minimum for the H2(
3Su

1) interaction andRm(u,j50) is
as defined above. As outlined above, the values
Rm(u,j50), and hence ofS, are determined iteratively once
the rest of the potential is specified; for more details s
Refs. 2–6, 10–12, and 33. WhileRm(u) ~and henceS! could
also be expressed as a function ofj, that would introduce
considerable complications into the potential model, a
since the effects on the potential energy surface are expec
to be modest, they can be implicitly incorporated in oth

TABLE II. Values of the$An%, $Bn%, and$Dn% constants characterizing the
damping functionsf n(R,u) of Eq. ~5!, in atomic units~Ref. 52!.

n56 8 10

An 0.364 8 0.307 3 0.251 4
Bn 0.033 60 0.024 69 0.023 79
Dn 0.001 651 0.001 227 0.000 566 4
g

c-

c-
.
f
us

e

of

e

d
ted
r

parts of the model. Note that in contrast to the situation for
the representation ofEHL

~1! , the values ofRm(u) do affect the
values of the resulting potential function.

The long-range multipole interaction coefficients
Cn(u,j) appearing in Eq.~2!, which in general contain both
dispersion and induction contributions, are expanded as

Cn~u,j!5 (
l50

n24

Cn
~l!~j!Pl~cosu!

5 (
l50~2!

n24

(
k50

4

Cn
l,k Pl~cosu!jk, ~6!

whereCn
(l)(j)50 whenl is odd. The fact that the H2–Ar

potential energy surface collapses to the one-dimensiona
He–Ar potential curve whenj→21 also means that
Cn
(l)(j521)50 whenl.0. For fixed values ofn and l,

the latter condition can be used to constrain the value of on
of the expansion coefficients, since

Cn
l,452 (

k50

3

~21!kCn
l,k for l.0. ~7!

Anisotropic dispersion and induction coefficientsCn
(l)(j) for

a number of~rare gas!–H2 interactions have been computed
by Wormeret al.57 The dispersion coefficients were calcu-
lated from dynamic multipole polarizabilities of H2 and of
the rare gas atoms, while the induction coefficients were de
rived from the multipole moments of H2 and the static po-
larizabilities of the atoms. Theseab initio results for the
vibrationally averaged~over j! C6

(0) andC6
(2) values are, re-

spectively, only 0.5% and 1.5% lower than the accurate val
ues determined by constrained dipole oscillator strength
~DOSD! techniques.58

The total calculated long-range coefficientsCn
(l)(j) are

listed in Table III, together with their estimated uncertainties;
the ab initio results forC6

(0) andC6
(2) were scaled to repro-

duce the DOSD values.58 Forn.6 theseCn
(l) values contain

both dispersion and induction contributions, and we have
assumed in Eq.~2! that the induction energy damping func-
tions are the same as those for the corresponding dispersio
terms. This is not unreasonable, since the attractive part o
TABLE III. Ab initio values of composite dispersion and induction coefficientsCn
(l)(j) for H2–Ar, in atomic units~Ref. 57!. The values ofC6

(0) andC6
(2) were

scaled to reproduce the accurately known values obtained from dipole oscillator strength distributions~Ref. 58!.

r /a0 j a C6
(0) C6

(2) C8
(0) C8

(2) C8
(4) C10

(0) C10
(2) C10

(4) C10
(6)

0.0 21.0 9.502b 0 157b 0 0 3 605b 0 0 0
1.0 20.310 20.419 1.159 409.25 48.478 1.489 10 128 1 338 39 8.2
1.2 20.172 23.560 1.739 488.42 81.169 3.400 12 458 2 376 124 16.9
1.4 20.034 26.821 2.433 575.43 127.130 6.360 15 114 3 905 249 25.3
1.449 0.000 27.630 2.620 597.81 140.670 7.280 15 811 4 366 287 27.2
1.65 0.139 30.952 3.435 693.41 206.720 11.930 18 845 6 660 500 39.6
2.0 0.381 36.545 4.972 871.01 367.400 23.970 24 766 12 538 1206 80.3
3.0 1.071 47.150 7.8892 1378.10 1205.300 79.130 44 691 48 965 8752 477.2
Uncertainty: 61% 61% 63% 68% 612% 68% 615% 625% 640%

aj5(r2r 0)/r 0 , with r 051.448 739a0 .
bTheser50 values are based on Ref. 80, withC6

(0) being scaled to take account of the DOSD results, and the uncertainties inC6
(0), C8

(0), andC10
(0) taken to

be65%,615%, and630%, respectively.

J. Chem. Phys., Vol. 105, No. 7, 15 August 1996
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2643Bissonnette et al.: PES for Ar–H2
the H2–Ar interaction is dominated by the dispersion ener
and little is known about induction energy damping fun
tions for interactions involving molecules.

Part of the success of the XC potential energy mode
yielding reliable~rare gas!–~rare gas! and two-dimensiona
~rare gas!–molecule potentials,5,10–12and of the HFD model
in treating~rare gas!–~rare gas! potentials,5,40,41is due to the
use of the flexibility in the model associated with the unc
tainties in the input dispersion energy coefficients. This
volved allowing those coefficients to vary within their es
mated uncertainties when fitting to experimental data. In
present application of the XC model to H2–Ar, we extend
this idea and introduce a more general way of taking acco
of these uncertainties.

In most previous modeling of multidimensional van d
Waals potential energy surfaces, the long-range potentia
ergy expansion coefficients were obtained from~fits to! the
best input values, and then held rigidly fixed at those valu
As pointed out above, this overlooks the very real uncerta
ties in the calculated values ofCn

(l)(j), uncertainties which
tend to increase rapidly withn andl, and it introduces un-
necessary rigidity into the potential model. While one cou
allow selected expansion coefficientsCn

l,k to vary, obtaining
meaningful estimates of their individual uncertainties is qu
impractical. The present approach therefore focuses on
theoreticalCn

(l)(j) values, for which realistic uncertaintie
can be estimated. These quantities are treated asab initio
‘‘data’’ and the coefficientsCn

l,k introduced as additiona
parameters in our least-squares fits to optimize the mo
potential. This would superficially appear to involve a lar
increase in the number of empirical parameters require
define the XC potential energy surface. In practice, howe
the Cn

l,k coefficients are largely determined by the inp
Cn
(l)(j) values and their estimated uncertainties, and for

most part are only modestly affected by the concurrent fitt
to the experimental data. Therefore, the only unconstrai
empirical adjustable parameters defining the XC model
those defining the scaling factorF appearing in Eq.~2!.

The scaling functionF is in general expected to be
weak function ofR, u, and j.10–12 In the present work it
proved adequate to represent it as a function ofu andj only,

F5F0,01F0,1j1~F2,01F2,1j!P2~cosu!. ~8!

More sophisticated parametrizations ofF were also consid-
ered, but the resulting modest improvement in the quality
fit to the experimental data did not justify the increased co
plexity.

In summary, the XC model potential for H2–Ar is de-
fined by Eqs.~2!–~8!. Fixing F51 and determining value
of theCn

l,k coefficients solely from a fit to the inputCn
l(j)

coefficients given in Table III then defines a theoretic
‘‘starting’’ potential, labeled XC~0!, which containsno em-
pirical parameters. While realistic, this three-dimensio
surface is not expected to be quantitatively accurate,
optimization of the model involves using a least-squares
to experimental data to determine the modestly varying s
ing factorF5F(R,u,j) and to adjust theCn

l(j) expansions.
J. Chem. Phys., Vol. 105
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Before describing these fits, however, we will discuss the
nature of the experimental data available for this system.

III. EXPERIMENTAL DATA USED IN THE ANALYSIS

One objective of this study is to use a fit to experimental
data to determine a refined three-dimensional XC potentia
energy surface for H2–Ar. The experimental data set used to
this end consists of IR spectroscopic frequencies for H2–Ar
bimers,1 pressure shifting coefficients for Raman transitions
of H2 in Ar,42,43 and second virial coefficients measured for
the H2–Ar mixture.44,45 While these types of data are
complementary, the spectroscopic data is the most importan
source of information. However, it primarily contains infor-
mation about the potential in the vicinity of the potential
energy well, whereas the pressure shifting and virial data ar
relatively more sensitive to the H2–Ar interaction for smaller
intermolecular separations. Independent tests of the resultin
surface will then be provided by comparisons with elastic
and inelastic differential scattering cross sections59,60 and
with hyperfine transition measurements.61

The newly measured infrared spectra obtained by
McKellar for H2–Ar and D2–Ar are described in detail in the
accompanying paper.1 In addition to its improved precision,
the new data set differs from those14,62 used in previous
analyses13,15,17,18in three ways. First, the presence of far-IR
transitions corresponding toDv~diatom!50, in addition to
mid-IR data forDv~diatom!51, makes the analysis much
more directly sensitive to thej dependence of the potential
anisotropy. In the same vein, the observation ofDv52 tran-
sitions effectively doubles the range ofj directly probed by
these experiments. In addition, the observation of transition
into the first vibrationally excited van der Waals stretching
state~n51→0 or 1←0 transitions! greatly increases the sen-
sitivity to the shape of the outer portion of the potential well.
Thus, the new IR data set has substantial qualitative an
quantitative improvements over those available previously
This clearly means that it should provide a critical test of the
XC potential model, and that refining the XC~0! surface us-
ing a fit to those data should yield a potential of substantially
higher quality than currently available. Note too that our
analysis simultaneously fits to 94 transition frequencies fo
H2–Ar and 77 for D2–Ar, with the differences between the
isotopomers being automatically accounted for by appropri
ate averaging over thej dependence of the potential energy
surfaces.

The method used for calculating the transition frequen-
cies~and predissociation line widths! is the secular equation/
perturbation theory~SEPT! method of Hutson and Le Roy.63

For the H2–~rare gas! systems this method is extremely effi-
cient and gives calculated energy levels and other propertie
which are essentially exact for a given potential energy sur
face. This same method was also used for calculating th
hyperfine transition frequencies discussed in Sec. VII. As in
all of the calculations reported here, the values of the atomi
masses and physical constants were taken from Ref. 64.

The pressure shifting coefficients for the H2–Ar system
indicate how the H2 transition frequencies are shifted by col-
, No. 7, 15 August 1996
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2644 Bissonnette et al.: PES for Ar–H2
lisional interactions in an Ar bath gas. These shifts are due
perturbation of the monomer level energies induced by c
lisions between hydrogen and argon. The experimental p
sure shifting coefficients used in our analysis are those
the Q1(0) Raman line of H2 in Ar reported by Farrow
et al.42 and Bergeret al.43 Earlier measurements reported b
Lallemand and Simova65 have been omitted from the fits
since they cover only a narrow temperature range and
effectively supplanted by the more accurate modern data

The conventional method for calculating accurate pre
sure shifting coefficients is based on close-coupling~CC!
scattering calculations;48,66–68however, they are far too de
manding to be incorporated into an iterative least-squa
fitting procedure. We have therefore employed an appro
mate, semiclassical quasistatic~QS! method for calculating
the pressure shifting coefficients.49 According to the QS
model, the pressure shifting coefficientDnQS(T) for the
(v9, j 9)→(v8, j 8) Raman transition of H2 is

DnQS~T!54pr0E
0

`

R2dR@V̄0
v8, j 8~R!2V̄0

v9, j 9~R!#

3exp@2V̄0
v9, j 9~R!/kT#, ~9!

wherer052.686 76331025 mol/Å3 is Loschmidt’s number,
andV̄0

v, j (R) is the isotropic part of the full potential average
over the (v, j ) vibrational wave function of the hydrogen
diatom. The advantages and limitations of the QS meth
have been discussed in detail in Ref. 49, where it was fou
that this extremely simple procedure is suprisingly reliable
was also pointed out there that the modest difference
tween the results of CC and QS theory calculations fo
given potential could be used to calibrate the latter, to ma
them effectively equivalent to the former.

Following the suggestions of Ref. 49, the discrepanc
between the CC and QS pressure shifting coefficients ca
lated for the TT3 H2–Ar potential surface

18 were used to
define a temperature-dependent correction function,

d~T![DnCC
TT3~T!2DnQS

TT3~T!, ~10!

whereDnCC
TT3(T) are the CC results obtained by Green for th

TT3 potential,
48 andDnQS

TT3(T) are the corresponding QS re
sults. The fundamental ansatz of our approach is the assu
tion that this correction function will be transferable, i.e., th
it will be approximately the same for similarly realistic po
tential energy surfaces. This implies that adding thisd(T)
function to the readily calculated QS results for any realis
H2–Ar potential will provide a good approximation to th
exact CC pressure shifting coefficient for that potential s
face:

DnCC~T!'DnQS~T!1d~T!. ~11!

The calculated frequency shifting coefficients used in t
present fits to experimental data were obtained in this wa

Second virial coefficients for H2–Ar mixtures have been
measured in the temperature range of 77–325 K.44,45At low
temperatures the virial coefficients provide informatio
about the ‘‘volume’’ of the potential energy well, while a
J. Chem. Phys., Vol. 105,
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high temperatures they contain information about the posi-
tion of the repulsive wall. In the present fits second virial
coefficients were calculated using the method of Pack,69

which includes translational and rotational quantum correc-
tions. These calculations were based on use of two-
dimensional H2–Ar potentials which were obtained from the
corresponding full potential by averaging over the (v, j )
5(0,0) vibrational wave function of hydrogen.

IV. OUTLINE OF THE FITTING PROCEDURE

The XC model provides a realistic three-dimensional
starting potential, XC~0!, which is based solely on informa-
tion derived from theory. Moreover, the realistic shapes of its
EHL

~1! andDEC components means that a great deal of flex-
ibility is introduced by the ability to adjust theCn

(l)(j) func-
tions within their uncertainties and to determine the scaling
factor F from a fit to experimental data. In the case of
H2–Ar, for which there is an abundance of experimental
data, this flexibility can be exploited to obtain a potential
energy surface of substantially higher quality than was pre-
viously available.

The present work uses an automatic nonlinear least
squares fitting procedure to optimize simultaneously the
agreement withNir infrared transition frequencies~ir!, Nps
Raman pressure shifting coefficients~ps!, and Nvir virial
coefficients ~vir!, as well with theNab theoretical values
of Cn

(l)(j) listed in Table III (ab). The ability of the model
to reproduce theNa known values of propertya ~a5ir, ps,
vir, ab! is characterized by the dimensionless standard de
viation s̄a , defined by

s̄a
25

1

Na
(
i51

Na

@Ya,i
obs2Ya,i

calc#2/ua,i
2 , ~12!

whereYa,i
obsdenotes the known or observed value of the prop-

ertyYa , Ya,i
calc the calculated value, andua,i is the uncertainty

associated with that datum. In the case of the infrared data
uir, i
2 is actually replaced by@uir, i

2 1 0.04G i
2#, in order to take

account of the uncertainty in the calculated eigenvalues for
metastable levels, which are estimated to be approximatel
20% of the predissociation line widthsG i .

18,63,70 Thus,
the uncertainty associated with each infrared datum also
incorporates the uncertainty due to our method of calcula-
tion. A s̄a value greater than unity would indicate that, on
average, the calculated values disagree with experimen
by s̄a times the uncertainty in the data, while a value less
than unity implies that, on average, the difference between
observation and calculation is less than the uncertainty.

The global dimensionless standard deviation minimized
by the fit may be written as

s̄25S Nir

Ntot
D s̄ ir

21S Nps

Ntot
D s̄ps

2 1SNvir

Ntot
D s̄vir

2 1SNab

Ntot
D s̄ab

2 ,

~13!

[SNexp

Ntot
D s̄exp

2 1SNab

Ntot
D s̄ab

2 ,

whereNexp5Nir1Nps1Nvir is the total number of experi-
mental data andNtot5Nexp1Nab . This definition of s̄2 in
No. 7, 15 August 1996
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e
TABLE IV. Parameters defining the optimized XC~fit! potential, with their 95% confidence limit uncertainties given in parentheses, where the scaling distanc
expansion parameters of Eq.~4! are:Rm

(0)56.783 754a0 , Rm
(2)50.041 267a0 , andRm

(4)520.002 328a0 .

Short-range parameters: F0,150.094 412 (0.012) F2,0520.053 489 (0.0084) F2,1520.120 82 (0.065)
F0,051.069 718~0.0054!
Long-range parameters: Cn

l,k/Eha0
n

n l k50 k51 k52 k53 k54

6 0 27.600 68~0.19! 23.217 3 ~0.86! 20.700 9 ~2.5! 24.366 ~1.13! 1.057 ~2.4!
6 2 2.623 7~0.029! 5.586 8 ~0.13! 2.354 ~0.50! 21.658 6 ~0.12! 21.0495
8 0 602.294~15! 696.18 ~72! 329.40 ~152! 257.1 ~80! 2153.8 ~144!
8 2 151.54~9.8! 450.8 ~54! 404.9 ~206! 95.9 ~89! 29.74
8 4 7.273 ~0.84! 27.835 ~5.9! 32.42 ~19! 8.08 ~9.3! 23.778
10 0 21 858.6~1120! 36 546. ~4970! 29 044 ~4 170! 10 708 ~4670! 2714 ~5280!
10 2 4 796.7~600! 15 843 ~3290! 16 673 ~11 900! 6 063 ~6220! 436.3
10 4 278.3~63! 1 055.6 ~493! 1 524 ~1 540! 2 541 ~1850! 1794.3
10 6 27.36 79.74 95.23 122.58 79.73

2645Bissonnette et al.: PES for Ar–H2
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terms of the component valuess̄a
2 was introduced so that the

quality of the fit to individual properties may be compared
each other and to the quality of the overall fit in an equiv
lent manner. Thus, the value ofs̄exp provides a measure o
the ability of the parametrized potential model to reprodu
the overall experimental data set, while the value ofs̄ab

indicates the degree to which the constraints on theCn
(l)(j)

are satisfied.
In the optimization of the model, theCn

l,4 coefficients
for l.0 were not varied explicitly, but were constrained b
Eq. ~7!. In addition, theC10

6,k coefficients were determined
solely from theab initio values ofC10

(6)(j), as the experimen-
tal data seemed completely insensitive to their values;
seven nonzero values ofC10

(6)(j) were therefore omitted from
the ‘‘ab’’ data set used in the fits. As a result, 39 paramete
were varied simultaneously in a least-squares fit to a se
observations consisting ofNexp5190 experimental data
~Nir5171,Nps58, andNvir511! and 59 nonzeroCn

(l) values
~Nab559; see Table III!. The parameters varied explicitly in
the fits were therefore:

4 short-range parameters:F0,0, F0,1, F2,0, F2,1

35 long-range parameters:$Cn
0,kun56,8,10; 0<k<4%

$Cn
2,kun56,8,10; 0<k<3%

$Cn
4,kun58,10; 0<k<3%.

It is important to realize, however, that the 35 long-ran
parameters serve primarily to represent the inputCn

(l)(j)
data. In other words, most of the parameters being varied
these fits are not truly ‘‘free’’ empirical parameters, since t
long-range coefficient expansions are largely determined
the input data of Table III, and most are only slightly mod
fied by the fits to the experimental data. Thus, the fits
experimental data mainly determine the four truly empiric
parameters, theFl,k of Eq. ~8!, with modest, but nevertheles
important additional flexibility being introduced by treatin
the long-range multipolar interaction energy constan
~weighted by their uncertainties! like experimental data in
the analysis.

The fits to determine the set of potential paramete
which minimizes̄2 require values of the partial derivative
J. Chem. Phys., Vol. 105
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of Ya,i
calc ~for a5ir, ps, and vir! and ofCn

(l)(j) with respect to
the potential parameters. For the experimental data, the de
rivatives with respect to a potential parameterpj were calcu-
lated by symmetric finite differences,

]Ya,i
calc

]pj
'
Ya,i
calc~pj1Dpj !2Ya,i

calc~pj2Dpj !

2Dpj
, ~14!

whereas the derivatives of theCn
(l)(j) were evaluated ana-

lytically,

]Cn
~l!~j!

]Cn8
l8,k

5dn,n8dl,l8j
k. ~15!

These equations show that to calculate the derivatives for a
given set of trial parameter values, the experimental data se
must be computed (2Np11) times, whereNp denotes the
number of parameters being varied. Since the experimenta
data must be computed many times during the optimization,
it is imperative to simulate the data using methods which are
extremely efficient.

V. OPTIMIZED XC POTENTIAL ENERGY SURFACE
FOR H2–Ar

The optimized XC potential for H2–Ar determined by
our analysis is denoted XC~fit!; the values of theFl,k and
Cn

l,k parameters which define it are listed, with their 95%
confidence limit uncertainties~in parentheses!, in Table IV.
Some of the uncertainty in the optimized parameters of Table
IV is due to uncertainty in the data or inadequacies of the fit,
but most arises from interparameter correlation, i.e., from the
fact that changes in one parameter may be partly compen
sated for by correlated changes in one or more of the others
With one noteworthy exception~see below!, the similarity of
theCn

(l) functions for the XC~0! and XC~fit! potentials~see
Fig. 1! confirms the assertion that they are largely deter-
mined by the theoretical input ‘‘data’’ and their uncertain-
ties, and are not truly free parameters in the fits to the ex-
perimental data.

The quality of our fit to the individual properties is indi-
cated by the dimensionless standard deviations which are
listed in Table V, together with analogous predictions for
, No. 7, 15 August 1996
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TABLE V. Dimensionless root mean square deviation from experiment (s̄a) of predictions of propertya
yielded by several different H2–Ar potentials.

Ref. # data

Potential

XC~fit! TT3 SAPT XC~0!

Properties used in the fit
~a! IR spectra 37 171 0.78 5.63 21.7 71.0
~b! Pressure shifting coefficients 38, 39 8 1.65 49.0 93.5 40.3
~c! Virial coefficients 40, 41 11 0.78 0.72 1.10 1.22
Sum of ~a!, ~b!, and~c!, as used in fits 190 0.83 11.8 28.9 67.4

Properties not used in the fit
Total cross sections for 13.5°<ulab<34° 55, 56 52 0.83 0.88 1.21 1.13
Total cross sections for 34°,ulab 55, 56 17 0.48 0.57 0.54 0.45
Inelastic cross sections 55, 56 3 0.46 0.39 1.98 8.53
Hyperfine transition frequencies 57 5 1.06 0.46 65.7 156.8
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certain other potential energy surfaces. They show tha
XC~fit! potential reproduces the experimental data and
j-dependent long-range interaction energy coefficients
well: s̄exp50.83, while s̄ab51.25 and the overalls̄50.95.
The agreement with the spectroscopic data is remark
good, and is particularly impressive when expressed in a
lute terms: the average experimental uncertainty in the
transition frequencies is estimated1 to be 0.005 cm21, and the
average difference between the calculated and observe
quencies, which is approximately 0.7830.005 cm2150.0039
cm21, is distinctly less than this average uncertainty. Co
parison of the entries in Table V for the XC~0! and XC~fit!
potentials indicates that we were able to improve the ag
ment with the IR data by a factor of almost 100, through
use of a very simple four-parameter representation of
scaling functionF @see Eq.~8!# and the flexibility associate
with the fit to theCn

(l)(j) data. The improvement in th
agreement with the pressure shifting coefficients is also
stantial, and much of the remaining apparent discrepa
may well reflect overly optimistic estimates of the expe
mental and computational uncertainties.42,43 However, the
virial coefficients seem only moderately sensitive to the
ferences among these potentials. More detailed compar
of the experimental IR data with calculations from this op
mized XC~fit! potential energy surface are presented
McKellar.1

Figure 1 compares the input values ofCn
(l)(j) and their

estimated uncertainties~from Table III, points, and/or erro
bars! with the corresponding fitted functions associated w
the XC~0! ~dashed curves! and XC~fit! ~solid curves! poten-
tials. It shows that, with the noteworthy exception of t
C10
(0)(j) function ~discussed below!, fitting to the experimen

tal data has modest effects on the functions representin
Cn
(l)(j) behavior, and that the agreement with the input v

ues is generally well within their estimated uncertainties
The only significant discrepancy between the input

the XC~fit! results seen in Fig. 1 occurs for the isotro
C10
(0)(j) function, for which the fitted values are systema

cally larger than theab initio ones. We believe that th
marked dependence of this discrepancy onj is an artifact of
the weights used in the fits, and that the essential point is
J. Chem. Phys., Vol. 105
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the experimental data require the average value ofC10
(0)(j)

@C10
(0), which approximatesC10

(0)(j50)# to be roughly 40%
~some 5 times the estimated uncertainty! larger than is im-
plied by theab initio input values. The net effect is that in
addition to the four unconstrained scaling function param-
etersFl,k , this adjustment ofC10

(0) effectively introduces a
fifth empirically determined parameter into our analysis.
This result implies that the present model forDEC does not
include sufficient high-order inverse-power behavior, and

FIG. 1. Long-range stretching-dependent potential energy coefficients
Cn
(l)(j) for H2–Ar; the input theoretical values~Ref. 57! and their estimated

uncertainties are shown as points and/or error bars, while the fitted functions
associated with the XC~0! and XC~fit! potentials are shown as dashed and
solid curves, respectively.
, No. 7, 15 August 1996
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TABLE VI. Calculated energies~in cm21! for various levels of H2(v, j ) –Ar based on the recommended XC~fit! potential energy surface. For each quasibound
level, the predissociation linewidth~in cm21! is given in brackets below the calculated energy.

n l

v50, j50 v50, j51 v51, j50 v51, j51

J5 l J5 l21 l l11 J5 l J5 l21 l l11

0 0 221.952 a a 222.317 223.014 a a 223.440
1 220.832 222.277 220.152 221.205 221.899 223.462 221.162 222.322
2 218.603 219.003 217.925 218.980 219.681 220.081 218.942 220.103
3 215.295 215.686 214.619 215.672 216.386 216.791 215.646 216.808
4 210.952 211.336 210.282 211.327 212.057 212.461 211.318 212.478
5 25.649 26.023 24.994 26.017 26.760 27.161 26.030 27.176
6 0.485

~0.000!
0.128
~0.000!

1.105
~0.000!

0.134
~0.000!

20.610 20.999 0.094
~0.000!

21.012

7 7.14
~0.22!

6.83
~0.18!

7.69
~0.33!

6.83
~0.18!

6.13
~0.09!

5.78
~0.08!

6.76
~0.17!

5.77
~0.07!

1 0 20.405 a a 20.426 20.553 a a 20.571
1 20.075 20.185 20.035 20.091 20.179 20.330 20.120 20.202

aBecause of angular momentum coupling considerations, this level does not exist.

2647Bissonnette et al.: PES for Ar–H2
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that a betterDEC model which includesC12
(0)(j) terms is

needed to give a truly optimum fit to all the data. This is t
first clear example in which an XC potential energy mod
based on a truncation ofDEC at terms varying asR210 was
unable to adequately represent experimental data.4,6,71This is
partly due to the high estimated reliability of the inpu
Cn
(l)(j) values for the H2–Ar interaction relative to those

available~at the time! for other systems to which this ap
proach has been applied.
e
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In order to illustrate the effects of vibrational and cen-
trifugal stretching on some properties of these species,
Tables VI and VII list the energies of all bound and quasi-
bound levels of the complexes formed byj50 and 1 H2 and
D2 in both thev50 andv51 vibrational levels.72 In addi-
tion to the diatom vibrational and rotational quantum num-
bersv and j , states of the complex are labeled by the quan-
tum numbersn and l for the vibrational stretching and end-
over-end rotation of the van der Waals bondR, and the total
TABLE VII. Calculated binding energies~in cm21! for various levels of D2(v, j ) –Ar based on the recommended XC~fit! potential energy surface. For each
quasibound level, the predissociation linewidth~in cm21! is given in brackets below the calculated energy.

n l

v50, j50 v50, j51 v51, j50 v51, j51

J5 l J5 l21 l l11 J5 l J5 l21 l l11

0 0 228.366 a a 229.103 229.193 a a 230.015
1 227.739 229.364 226.942 228.368 228.569 230.296 227.719 229.267
2 226.487 226.580 225.689 227.062 227.323 227.382 226.472 227.958
3 224.617 224.819 223.818 225.160 225.461 225.646 224.607 226.059
4 222.137 222.394 221.336 222.660 222.992 223.243 222.135 223.567
5 219.060 219.349 218.258 219.569 219.927 220.217 219.068 220.486
6 215.402 215.711 214.601 215.899 216.283 216.598 215.420 216.830
7 211.186 211.509 210.389 211.673 212.082 212.413 211.220 212.618
8 26.443 26.773 25.653 26.919 27.350 27.693 26.494 27.876
9 21.214 21.548 20.441 21.677 22.130 22.478 21.284 22.642
10 4.429

~0.000!
4.099
~0.001!

5.172
~0.001!

3.985
~0.000!

3.520
~0.000!

3.172
~0.000!

4.339
~0.000!

3.028
~0.000!

11 10.35
~0.08!

10.04
~0.08!

11.03
~0.14!

9.95
~0.06!

9.48
~0.04!

9.14
~0.04!

10.24
~0.08!

9.02
~0.03!

12 16.49
~0.8!

16.20
~0.7!

17.16
~1.0!

16.12
~0.7!

15.63
~0.5!

15.31
~0.4!

16.36
~0.7!

15.21
~0.4!

1 0 24.379 a a 24.534 24.745 a a 24.929
1 23.989 24.550 23.725 24.137 24.351 24.968 24.059 24.523
2 23.219 23.354 22.964 23.361 23.572 23.707 23.289 23.735
3 22.095 22.227 21.855 22.228 22.433 22.571 22.163 22.586
4 20.665 20.788 20.451 20.784 20.975 21.108 20.730 21.113
5 0.95

~0.05!
0.85
~0.04!

1.11
~0.10!

0.87
~0.03!

0.701
~0.012!

0.583
~0.017!

0.894
~0.036!

0.590
~0.006!

6 2.55
~0.7!

2.46
~0.6!

2.46
~0.6!

aBecause of angular momentum coupling considerations, this level does not exist.

J. Chem. Phys., Vol. 105, No. 7, 15 August 1996
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2648 Bissonnette et al.: PES for Ar–H2
angular momentum quantum numberJ. Levels with positive
energies are ‘‘quasibound’’ states which lie above the r
evant potential asymptote and can dissociate by tunne
through the associated effective centrifugal potential barr
Their tunneling predissociation lifetimes can be determin
from the level widths which are given in parentheses bel
each~positive! level energy.63,70 In accord with the value of
the quality of fit parameters̄ ir , the level energy spacings ar
believed to be accurate to within;0.004 cm21, but the un-
certainties in their absolute binding energies@calculated us-
ing Eq. ~30! of Ref. 32# are;0.02 cm21.

The differences between the level energies for co
plexes formed from the diatom in statesv50 andv51 il-
lustrate the effect of the monomer vibrational stretching
the potential surface. Similarly, the difference between t
energy of a (v, j ,n,l ,J) level for j50 and the average overJ
of the three correspondingj51, J5 l , l61 levels illustrates
the effect of centrifugal stretching of the H2 or D2 on the
vibrationally averaged potential surfaces and the levels th
support. It is also interesting to note that the large zero po
energy, of approximately half the well depth, together wi
the extreme anharmonicity of the potential near its asym
tote, mean that the vibrational isotope shifts are quite m
est, in spite of the fact that the reduced masses of the
isotopomers differ by a factor of 2. Note too that in additio
to differences in the reported energies, these results di
from the SAPT potential predictions of Ref. 73 in that the
show that H2–Ar ~as well as D2–Ar! actually hastwo bound
van der Waals stretching states.

It is relevant to also comment on the choice of the fun
tional form used for the XC potential, as summarized by E
~2!–~8!, especially in regard to its bond-stretch orj depen-
dence. Since each of the componentsF, EHL

~1! , andDEC may
be written as a linear power series inj, the overall potential
may be expanded as

V~R,u,j!5 (
k50

4

jkUk~R,u!. ~16!

For the homonuclear H2 isotopomers,
74 the j dependence of

the potential may then be fully taken into account by simp
replacing these powers ofjk by appropriate values of the
expectation values or matrix elements^v8, j 8ujkuv9, j 9& for
various hydrogen isotopomers, which are readily availa
and/or readily calculated.50 Maintaining this simple linear
dependence on matrix elements of powers ofj is a key rea-
son fornot allowing the scaling distanceRs @see Eq.~4! and
the discussion below Eq.~5!# to be a function ofj. Note,
however, that in spite of the definition ofr 0 given below Eq.
~2!, the two-dimensional vibrationally averaged potential f
ground-state H2 is not simply U0(R,u), since expectation
values of higher powers ofj are not zero for H2(v50,j50).
Of course the fact that the angle dependence of the poten
is built into the Heitler–London exponent and damping fun
tion scaling distanceRs5Rm(u,j50) means that expanding
theUk(R,u) functions in terms of the familiarVl,k(R) func-
tions of Eq. ~1! requires the use of numerical quadratu
J. Chem. Phys., Vol. 105
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techniques.74 However, this is true for many other sophisti-
cated potential forms and imposes no significant difficulties

A FORTRAN subroutine for generating the present rec-
ommended XC~fit! potential may be obtained by electronic
mail by sending a request toleroy@theochem.uwaterloo.ca,
or by anonymousf tp from directorypub/leroy/H2Aron our
computertheochem.uwaterloo.ca.75

VI. COMPARISON WITH OTHER H2–Ar POTENTIALS

Detailed calculations have been performed to compar
the capabilities of the present recommended XC~fit! potential
with other recent high quality potential energy surfaces for
H2–Ar. The other surfaces considered are ourab initio based
starting potential XC~0!, the empirical TT3 potential of
Le Roy and Hutson,18 and a high quality fullyab initio po-
tential obtained using the symmetry-adapted perturbatio
theory ~SAPT! method.46 The quality of the predictions
yielded by these surfaces for a variety of properties are com
pared in Table V, while the potentials themselves are com
pared in Figs. 2–4. The present section discusses differenc
among these potentials and compares the quality of the
predictions for the properties used to determine our XC~fit!
surface. Section VII will then examine the quality of their
predictions for two other classes of experiments which pro
vide independent tests of all four surfaces. Analogous com
parisons of the TT3 potential with earlier surfaces for this
system were presented in Ref. 18.

For the four potentials considered here, Fig. 2 shows
how the position (Rm) and depth (Vm) of the radial mini-

FIG. 2. Variation of the potential minimum (Vm) and its radial position
(Rm) with u ~at j50!, for four different H2–Ar potentials.
, No. 7, 15 August 1996
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2649Bissonnette et al.: PES for Ar–H2
mum varies with relative orientation, when the H2 stretching
coordinate is fixed atj50. For all four cases the global mini
mum lies at the collinear geometry~u50 orp!. For the three
better surfaces, the well depths vary with angle by appro
mately 18%, while the corresponding minimum positio
vary by only;1%; for the initial XC~0! surface the corre-
sponding ranges are 8% and 2.6%. Thus, it is clear that
well depth for the XC~0! potential is generally too small and
its variation with u too weak, while its minimum position
varies too rapidly withu. In spite of this marked difference
in its anisotropy~see also Fig. 4!, it is interesting to note~see
Fig. 3! that the isotropic or spherically averaged parts of th
potential are quite similar to those of the optimized XC~fit!
surface.

Each of the potentials considered here may also be
pressed in terms of the double expansion of Eq.~1!, and a
more conventional way of comparing potentials is in term
of its radial strength functionsVl,k(R). For these surfaces
the four leading terms of this expansion are compared
Figs. 3 and 4; Figure 3 shows the basic isotropic potent
V0,0(R) and the coefficients of their linear stretching depe
denceV0,1(R), while Fig. 4 shows the analogous function
defining the strength of theP2~cosu! anisotropy,V2,0(R),
and its linear stretching dependence,V2,1(R).

It is clear that the basic isotropic potentialV0,0(R) is
remarkably similar for all four potentials, but there are si
nificant differences among the other components. It is int
esting to note that differences among the quality of the p
dictions of various experimental data may often be correla
with differences or similarities of these radial strength fun
tions. For example, since the second virial coefficients

FIG. 3. Radial strength functionsV0,0(R) andV0,1(R) of Eq. ~1! for four
different H2–Ar potentials.
J. Chem. Phys., Vol. 105,
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H2–Ar are largely determined by the isotropic component of
V, it is not surprising that the various calculated values of
s̄vir seen in Table V are all similar.

The most accurate previous intermolecular potential for
H2–Ar is the TT3 surface which Le Roy and Hutson obtained
from a least-squares fit to the best then-available IR data and
a number of other properties.18 The fact that its value
of s̄ ir55.6 is moderately large is not unreasonable in view of
the fact that the TT3 surface was based on fits to a less
extensive IR data set whose average uncertainty was fou
times higher than that for the IR data used here. The size of
the s̄ ir value for the XC~0! potential~571! reflects the sub-
stantial differences between itsk50 anisotropy strength
function and those of the other potentials in the well region
~dashed curves in the lower segment of Fig. 4!. Moreover, in
view of the differences among thek51 functions seen in
Fig. 4, it is perhaps surprising that the TT3 predictions of the
IR data are moderately close to those for XC~fit! and so
much better than those of the SAPT potential.

An independent test of the accuracy of the TT3 potential
was provided by Green’s close-coupling calculations of Ra-
manQ-branch pressure shifting coefficients for H2 and D2 in
Ar.48 The large discrepancies he found~cf. the values̄ps549
in Table V! were interpreted as showing that thej depen-
dence of the isotropic part of the TT3 potential is not fully
reliable in the repulsive wall region. This correlates with the
fact that the stretching dependence of the repulsive wall of
the isotropic potential~see the dotted curve fork51 in the
upper segment of Fig. 3! is distinctly different from that for
the XC~fit! potential, for whichs̄ps51.6. Similarly, the even
larger difference between theV0,1(R) functions for the
XC~fit! ~solid curves! and SAPT~dot–dashed curves! func-

FIG. 4. Radial strength functionsV2,0(R) andV2,1(R) of Eq. ~1! for four
different H2–Ar potentials.
No. 7, 15 August 1996
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2650 Bissonnette et al.: PES for Ar–H2
tions in this region explains the even largers̄ps value found
for the latter. Note that predictions of the starting XC~0!
potential are slightly better than those obtained from the T3
surface.

A more detailed illustration of the quality of the pressu
shifting coefficient predictions for the various potentials
provided by Fig. 5, where the experimental data are sho
as points and the ‘‘effective’’ close-coupling values yielde
by Eq. ~11! are shown as solid curves. For the sake of co
parison, the dashed curve labeled TT3~QS! shows the quasi-
static theory values for the TT3 potential obtained directly
from Eq. ~9!. The correction functiond(T) of Eq. ~10! was
defined by the difference between points on this dash
curve and Green’s48 CC results for this potential, which ef
fectively define the solid curve labeled TT3.

It is clear that only the XC~fit! potential reproduces the
experimentally measured pressure shifting coefficients.
the same time, it should be pointed out that a prelimina
XC~fit! potential based on a fit to only the IR data gave mu
less accurate predictions of this property, the discrepan
having the opposite sign but approximately the same mag
tude as those for the XC~0! potential. Thus, inclusion of the
pressure shifting data in the least-squares data set is esse
for obtaining an accurate description of the short-ran
stretching dependence of the isotropic part of the potent
which is the property which governs pure vibrational inela
ticity. The similarity between theV0,1(R) functions for the
XC~0! and XC~fit! potentials~see Fig. 3! is probably respon-

FIG. 5. Pressure shifting coefficients for the RamanQ1(0) line for H2 in Ar;
the solid circles are the experimental results of Farrowet al. ~Ref. 42! and
the open squares those of Bergeret al. ~Ref. 43!. The older experimental
results of Lallemand and Simova~Ref. 65! are shown as open triangles
although they were not used in our analysis. The dashed curve represen
raw QS results for the TT3 potential, while the solid curves are effective CC
results generated using Eq.~11!.
J. Chem. Phys., Vol. 105,
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sible for the fact that the XC~0! function predicts the correct
temperature dependence for this property.

VII. INDEPENDENT TESTS OF THE NEW H2–Ar
POTENTIAL

In Sec. VI, the new XC~fit! function and three other
potentials were compared with regard to their ability to pre
dict discrete IR spectra, Raman pressure shifting coefficien
and virial coefficients, and Table V shows that the XC~fit!
surface provides by far the best overall representation
these data. However, as those data were used in the
which determined the XC~fit! potential, the good agreement
with experiment of its predictions for those properties wa
not unexpected. In contrast, the present section tests the a
ity of the four potential surfaces considered above to pred
two families of properties which were not used in the abov
analysis: the elastic and inelastic differential cross sectio
for D2 with Ar measured by Buck and co-workers,59,60 and
the hyperfine transitions of H2–Ar measured by Waaijer and
Reuss.61

The total differential cross sections are mainly sensitiv
to the position and shape of the repulsive wall of the isotr
pic potential up to the experimental collision energy of;700
cm21, while the large angle inelastic cross sections depe
on the strength of the potential anisotropy in this region.59

These are features of the potential energy surface which
not directly probed by the experimental data used in th
present fits. Moreover, while the short range anisotropy
the TT3 potential was constrained to give good agreeme
with the experimental inelastic cross sections, its determin
tion took no account of the total differential cross section
and of course no experimental data were used in the det
mination of the XC~0! and SAPT potentials. Thus, these
properties provide an objective independent test of the cap
bilities of these potentials.

As in previous work,18,60 the total and inelastic differen-
tial cross sections were calculated within the coupled sta
approximation and averaged over the experimental con
tions using computer programs kindly supplied by Profess
U. Buck. Thus, the calculated elastic and inelastic cross se
tions presented here are directly comparable with those
ported in Refs. 18, 59, and 60. Since those properties effe
tively depend only on the two-dimensional (R,u)-
dependence of the potential, the full three-dimension
potentials considered here were vibrationally averaged f
the ground state of D2 before being used in these calcula
tions.

For the same four potential energy surfaces consider
in Sec. VI, Fig. 6 illustrates the quality of agreement with th
experimental total differential cross sections~points! ob-
tained at a collision energy ofEcoll583.2 meV. The gener-
ally good behavior seen there correlates well with the sim
larity of the effective isotropic potentialsV0,0(R) seen in Fig.
3. As in previous work,18,60 for more quantitative compari-
sons the small angle cross sections, sensitive mainly to
position of the low energy repulsive wall, and the large ang
region, which depends mainly on the slope of the high

the
No. 7, 15 August 1996
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2651Bissonnette et al.: PES for Ar–H2
energy repulsive wall, are considered separately. For th
properties, rows 5 and 6 of Table V compare the values
the dimensionless root mean square deviation from expe
ment yielded by the four potentials under consideratio
While all four surfaces appear satisfactory as far as the la
angle cross sections are concerned~i.e., their s̄a values are
all ,1.0!, the small angle data discriminate somewh
against the XC~0! and SAPT surfaces.

For the rotationally inelasticj50→2 cross sections for
D2, Fig. 7 and row 7 of Table V illustrate the quality o
agreement with experiment yielded by the various potentia
On the scale of Fig. 7, the various predictions for the elas
cross sections are essentially equivalent, but those for
inelastic process are not. Once again, the TT3 and XC~fit!
predictions are in full agreement with experiment (s̄a,1.0),
while those of the SAPT and XC~0! potentials lie outside of
the experimental uncertainties. It is interesting to note th
the fact that the SAPT predictions are slightly too small an
the XC~0! predictions distinctly too large correlates with th
relative strengths of the short-range anisotropy strength fu
tionsV2,0(R) seen in the upper segment of Fig. 4. While th
TT3 surface was constrained to give good agreement w
this property,18 the quality of the agreement for the XC~fit!
potential provides a completely independent confirmation
its reliability. Indeed, for both elastic and inelastic cross se
tions, the predictions of the XC~fit! potential agree with ex-
periment as well as those of the best-fit two-dimension
potential determined59,60 from a direct fit to those data.

As discussed in Ref. 18, the hyperfine transitions at rad

FIG. 6. Comparison with experiment~Refs. 59 and 60, points with error
bars, data offset by factors of 4 for the different potentials! of total differ-
ential cross sections for D2 colliding with Ar, calculated from the indicated
potential energy surfaces.
J. Chem. Phys., Vol. 105,
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frequencies measured by Waaijer and Reuss61 depend mainly
on the expectation value of the anisotropy strength function
for levels of H2–Ar formed from ground stateortho hydro-
gen~v50, j51!. Those measurements were included in the
data set which determined the TT3 potential, so good agree-
ment there was expected; however, they provide an indepen-
dent test of the other potentials considered here. The results
in the last row of Table V show that the present recom-
mended XC~fit! potential predicts these data essentially
within the experimental uncertainties, while the SAPT and
particularly the XC~0! potential do much worse. The relative
quality of these results also correlates well with the degree of
similarity of the anisotropy strength functionsV2,0(R) in the
attractive region, seen in the lower segment of Fig. 4.

VIII. CONCLUSIONS

This paper has presented the construction of a reliable
new three-dimensional potential energy surface for the
H2–Ar system, which is based on the XC potential model.2–6

The results show that the XC model is sufficiently realistic
and flexible that only five effectively free empirical param-
eters are required in the least-squares fits to optimize agree-
ment with high quality experimental data. This contrasts with
the eight parameters~plus additional intuitively justified con-
straints! required to define the best previous potential for this
system.18 The resulting optimized XC~fit! potential provides
the most accurate present description of the experimental
data for the H2–Ar interaction, and since it is constructed
from realistic theoretical components, it is expected to ex-
trapolate well into regions not directly sampled by the ex-

FIG. 7. Comparison with experiment~Refs. 59 and 60, points with error
bars! of elastic (j50→0) and rotationally inelastic (j50→2) cross sec-
tions for D2 colliding with Ar, calculated from the indicated potential energy
surfaces.
No. 7, 15 August 1996
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2652 Bissonnette et al.: PES for Ar–H2
perimental data used in the analysis. This appears to be
firmed by the quality of its predictions of the differentia
scattering and hyperfine data. The realistic nature of the co
ponents of the basic XC model is an important feature in
determination of potentials for complexes formed with He
Ne, for which the relatively small number of bound stat
and relatively large zero point energy76 would introduce a
particularly high degree of model dependence into a pur
empirical analysis. While the potential form is somewh
complex, its availability as a FORTRAN subroutine~see
Sec. V! should obviate difficulties in applying it.

Another noteworthy point is the fact that within the av
erage experimental discrepancy of 0.004 cm21, the 94 IR
transitions for H2–Ar and 77 for D2–Ar are fully accounted
for by the same three-dimensional potential energy surfa
In other words, within this resolution the differences betwe
the IR spectra of these isotopomers are fully accounted
by ordinary mass and vibrational averaging~over j! consid-
erations, so thatno Born–Oppenheimer breakdown effect
are evident.

The SAPT method is probably the best fullyab initio
procedure for calculating van der Waals potentials curren
in use.46,77–79In view of the fact that no experimental dat
were used to refine it, the agreement of the SAPT poten
of Ref. 46 with the fitted potentials, and the quality of th
predictions it yields~see Table V, Figs. 6 and 7, and Ref. 73!
are really remarkably good. However, those predictions s
disagree significantly with experiment. The present wo
suggests that its greatest deficiencies are in the isotropic
of the diatom stretching dependence in the short-range
gion, which are the portions of the potential responsible
rotational and vibrational inelasticity. In any case, it is cle
that further developments are necessary before such po
tials will truly take the place of empirically refined surface
such as the present XC~fit! function.

In conclusion, therefore, we believe that the most pr
ductive means of developing realistic and flexible multid
mensional potential energy surface models for van der Wa
interactions is the type of approach used here. The com
nent Heitler–London and Coulomb interaction energies
relatively easy to calculate, and even without adjustm
give a reasonable approximation to the final optimized is
tropic surface. The fact that they build in very realistic d
scriptions of the shapes of, and interactions between,
component species also means that relatively few empir
parameters are required to refine such models to yield st
of-the-art potentials.
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64I. Mills, T. Cvitaš, K. Homann, N. Kallay, and K. Kuchitsu,Quantities,
Units and Symbols in Physical Chemistry, 2nd ed.~Blackwell Scientific,
Oxford, 1993!.

65P. Lallemand and P. Simova, J. Mol. Spectrosc.26, 262 ~1968!.
66R. Blackmore, S. Green, and L. Monchick, J. Chem. Phys.88, 4113

~1988!.
67S. Green, inStatus and Future Developments in Transport Properties,
edited by W. A. Wakeham~Kluwer Academic, Dordrecht, 1992!, p. 257.

68S. Green, J. Chem. Phys.92, 4679~1990!.
69R. T Pack, J. Chem. Phys.78, 7217~1983!.
70R. J. Le Roy and W.-K. Liu, J. Chem. Phys.69, 3622~1978!.
71R. A. Aziz, W. J. Meath, and A. R. Allnatt, Chem. Phys.78, 295 ~1983!.
72We did not undertake an exhaustive search for quasibound levels lying
extremely close to potential barrier maxima, and a limited number having
widths.1 cm21 are omitted.

73R. Moszynski, B. Jeziorski, P. E. S. Wormer, and A. van der Avoird,
Chem. Phys. Lett.221, 161 ~1994!.

74W.-K. Liu, J. E. Grabenstetter, R. J. Le Roy, and F. R. McCourt, J. Chem.
Phys.68, 5028~1978!.

75To obtain this material by anonymousftp, begin by using the commandftp
theochem. uwaterloo.ccto connect to our computer. The response to the
userid prompt should beanonymousand that to the password prompt
should be the caller’s e-mail address. The specified subdirectory may then
be accessed with the commandcd pub/leroy/subdirectory-name, and the
desired files copied with the commandget filename.

76K. Crowell, C. Bissonnette, R. J. Le Roy, R. J. Wheatley, T. H. Wu, W. J.
Meath, and A. R. W. McKellar~unpublished!.

77B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev.94, 1887
~1994!.

78R. Moszynski, P. E. S. Wormer, B. Jeziorski, and A. van der Avoird, J.
Chem. Phys.101, 2811~1994!.

79R. Moszynski, T. Korona, P. E. S. Wormer, and A. van der Avoird, J.
Chem. Phys.103, 321 ~1995!.

80J. M. Standard and P. R. Certain, J. Chem. Phys.83, 3002~1985!.
No. 7, 15 August 1996

¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp


